You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The first complete proof of Arnold diffusion—one of the most important problems in dynamical systems and mathematical physics Arnold diffusion, which concerns the appearance of chaos in classical mechanics, is one of the most important problems in the fields of dynamical systems and mathematical physics. Since it was discovered by Vladimir Arnold in 1963, it has attracted the efforts of some of the most prominent researchers in mathematics. The question is whether a typical perturbation of a particular system will result in chaotic or unstable dynamical phenomena. In this groundbreaking book, Vadim Kaloshin and Ke Zhang provide the first complete proof of Arnold diffusion, demonstrating th...
This book introduces mathematicians to the fascinating mathematical interplay between ideas from stochastics and information theory and practical issues in studying complex multiscale nonlinear systems. It emphasizes the serendipity between modern applied mathematics and applications where rigorous analysis, the development of qualitative and/or asymptotic models, and numerical modeling all interact to explain complex phenomena. After a brief introduction to the emerging issues in multiscale modeling, the book has three main chapters. The first chapter is an introduction to information theory with novel applications to statistical mechanics, predictability, and Jupiter's Red Spot for geophys...
This book focuses on finiteness conjectures and results in ordinary differential equations (ODEs) and Diophantine geometry. During the past twenty-five years, much progress has been achieved on finiteness conjectures, which are the offspring of the second part of Hilbert's 16th problem. Even in its simplest case, this is one of the very few problems on Hilbert's list which remains unsolved. These results are about existence and estimation of finite bounds for the number of limit cycles occurring in certain families of ODEs. The book describes this progress, the methods used (bifurcation theory, asymptotic expansions, methods of differential algebra, or geometry) and the specific results obta...
Considers the 3 -dimensional gravitational n -body problem, n32 , in spaces of constant Gaussian curvature k10 , i.e. on spheres S 3 ?1 , for ?>0 , and on hyperbolic manifolds H 3 ?1, for ?
Ce livre constitue un expos‚ d‚taill‚ de la s‚rie de cours donn‚s en 2020 par le Prof. Nicolas Bergeron, titulaire de la Chaire Aisenstadt au CRM de Montr‚al. L'objet de ce texte est une ample g‚n‚ralisation d'une famille d'identit‚s classiques, notamment la formule d'addition de la fonction cotangente ou celle des s‚ries d'Eisenstein. Le livre relie ces identit‚s … la cohomologie de certains sous-groupes arithm‚tiques du groupe lin‚aire g‚n‚ral. Il rend explicite ces relations au moyen de la th‚orie des symboles modulaires de rang sup‚rieur, d‚voilant finalement un lien concret entre des objets de nature topologique et alg‚brique. This book provides a...
John Mather's seminal works in Hamiltonian dynamics represent some of the most important contributions to our understanding of the complex balance between stable and unstable motions in classical mechanics. His novel approach—known as Aubry-Mather theory—singles out the existence of special orbits and invariant measures of the system, which possess a very rich dynamical and geometric structure. In particular, the associated invariant sets play a leading role in determining the global dynamics of the system. This book provides a comprehensive introduction to Mather’s theory, and can serve as an interdisciplinary bridge for researchers and students from different fields seeking to acquai...
This book on integrable systems and symmetries presents new results on applications of symmetries and integrability techniques to the case of equations defined on the lattice. This relatively new field has many applications, for example, in describing the evolution of crystals and molecular systems defined on lattices, and in finding numerical approximations for differential equations preserving their symmetries. The book contains three chapters and five appendices. The first chapter is an introduction to the general ideas about symmetries, lattices, differential difference and partial difference equations and Lie point symmetries defined on them. Chapter 2 deals with integrable and lineariz...
ICM 2010 proceedings comprises a four-volume set containing articles based on plenary lectures and invited section lectures, the Abel and Noether lectures, as well as contributions based on lectures delivered by the recipients of the Fields Medal, the Nevanlinna, and Chern Prizes. The first volume will also contain the speeches at the opening and closing ceremonies and other highlights of the Congress.