You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The sixth ERCOFTAC Workshop on ‘Direct and Large-Eddy Simulation’ (DLES-6) was held at the University of Poitiers from September 12-14, 2005. Following the tradition of previous workshops in the DLES-series, this edition has reflected the state-of-the-art of numerical simulation of transitional and turbulent flows and provided an active forum for discussion of recent developments in simulation techniques and understanding of flow physics.
After Surrey in 1994, Grenoble in 1996, Cambridge in 1999, Enschede in 2001, Munich in 2003 and Poiters in 2005, the 7th Workshop, DLES7, will be held in Trieste, again under the auspices of ERCOFTAC. Following the spirit of the series, the goal of this latest workshop is to establish a state-of-the-art of DNS and LES techniques for the computation and modeling of transitional/turbulent flows covering a broad scope of topics such as aerodynamics, acoustics, combustion, multiphase flows, environment, geophysics and bio-medical applications. This gathering of specialists in the field should once again be a unique opportunity for discussions about the more recent advances in the prediction, understanding and control of turbulent flows in academic or industrial situations.
This volume contains the proceedings of the 2001 DLES4 workshop. It describes and discusses state-of-the-art modeling and simulation approaches for complex flows. Fundamental turbulence and modeling issues but also elements from modern numerical analysis are at the heart of this field of interest.
The book retraces the history of the Italian Association of Theoretical and Applied Mechanics (AIMETA) since its establishment in 1965. AIMETA is the official Italian association of mechanics adhering to IUTAM (International Union of Theoretical and Applied Mechanics), which organizes and coordinates a meaningful number of research activities, the most important of which are the biennial National Congress and the internationally renowned journal “Meccanica”, published by Springer. Besides collecting and organizing all related important data and information, as far as possible, by distinguishing among the five scientific areas – general mechanics, solids, structures, fluids, machines ...
Turbulent transport is currently a prominent and ongoing investigation subject at the interface of methodologies from theory to numerical simulations and experiments, and it covers several spatiotemporal scales. Mathematical analysis, physical modelling, and engineering applications represent different facets of a classical, long-standing problem that is still far from being thoroughly comprehended. The goal of this Special Issue is to outline recent advances of such subjects as multiscale analysis in turbulent transport processes, Lagrangian and Eulerian descriptions of turbulence, advection of particles and fields in turbulent flows, ideal or nonideal turbulence (unstationary/inhomogeneous/anisotropic/compressible), turbulent flows in biofluid mechanics and magnetohydrodynamics, and the control and optimization of turbulent transport. The SI is open to regular articles, review papers focused on the state of the art and the progress made over the last few years, and new research trends.
The practical importance of turbulence led the U.K. Royal Academy of Engineering to launch an Initiative on Turbulence, the most important outcome of which was the definition and agreement of the 1999 Newton Institute Research Programme on Turbulence. The main aim of the- month programme, held at the institute in Cambridge, was to bring together the mathematics and engineering communities involved in the turbulence area to address the many problems and to map out future strategy. As a part of the Research Programme, a Symposium on Direct and Large-Eddy Simulation was jointly organised with ERCOFfAC through their Large-Eddy Simulation Interest Group and took place in May 1999. Two previous ER...
With major implications for applied physics, engineering, and the natural and social sciences, the rapidly growing area of environmental fluid dynamics focuses on the interactions of human activities, environment, and fluid motion. A landmark for the field, the two-volume Handbook of Environmental Fluid Dynamics presents the basic principles, funda
In 1974, a scientific conference covering marine automation group and large vessels issues was organized under the patronage of the Technical Naval Studies Centre (CETENA) and the Italian National Research Council (CNR). A later collaboration with the Marine Technical Association (ATENA) led to the renaming of the conference as NAV, extending the topics covered to the technical field previously covered by ATENA national conferences. The NAV conference is now held every 3 years, and attracts specialists from all over the world. This book presents the proceedings of NAV 2018, held in Trieste, Italy, in June 2018. The book contains 70 scientific papers, 35 technical papers and 16 reviews, and subjects covered include: comfort on board; conceptual and practical ship design; deep sea mining and marine robotics; protection of the environment; renewable marine energy; design and engineering of offshore vessels; digitalization, unmanned vehicles and cyber security; yacht and pleasure craft design and inland waterway vessels. With its comprehensive coverage of scientific and technical maritime issues, the book will be of interest to all those involved in this important industry.
This volume provides a snapshot of the current and future trends in turbulence research across a range of disciplines. It provides an overview of the key challenges that face scientific and engineering communities in the context of huge databases of turbulence information currently being generated, yet poorly mined. These challenges include coherent structures and their control, wall turbulence and control, multi-scale turbulence, the impact of turbulence on energy generation and turbulence data manipulation strategies. The motivation for this volume is to assist the reader to make physical sense of these data deluges so as to inform both the research community as well as to advance practica...
With major implications for applied physics, engineering, and the natural and social sciences, the rapidly growing area of environmental fluid dynamics focuses on the interactions of human activities, environment, and fluid motion. A landmark for the field, this two-volume handbook presents the basic principles, fundamental flow processes, modeling techniques, and measurement methods used in the field, along with critical discussions of environmental sustainability related to engineering aspects. The first volume provides a comprehensive overview of the fundamentals, and the second volume explores the interactions between engineered structures and natural flows.