You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A little over ?ve years have passed since the ?rst edition of this book appeared in print. Seems like an instant but also eternity, especially considering numerous developments in the hardware and software that have made it from the laboratory test beds into the real world of powder diffraction. This prompted a revision, which had to be beyond cosmetic limits. The book was, and remains focused on standard laboratory powder diffractometry. It is still meant to be used as a text for teaching students about the capabilities and limitations of the powder diffraction method. We also hope that it goes beyond a simple text, and therefore, is useful as a reference to practitioners of the technique. ...
Handbook on the Physics and Chemistry of Rare Earths is a continuous series of books covering all aspects of rare earth science, including chemistry, life sciences, materials science, and physics. The main emphasis of the handbook is on rare earth elements [Sc, Y and the lanthanides (La through Lu)], but whenever relevant, information is also included on the closely related actinide elements. The individual chapters are comprehensive, broad, up-to-date, critical reviews written by highly experienced invited experts. The series, which was started in 1978 by Professor Karl A. Gschneidner Jr., combines and integrates both the fundamentals and applications of these elements, now publishing two volumes a year.
Handbook on the Physics and Chemistry of Rare Earths: Including Actinides, Volume 64, the latest release in this continuous series that covers all aspects of rare earth science, including chemistry, life sciences, materials science and physics, presents interesting chapters on a variety of topics, with this release including sections on Structure and properties of Ln2M3Ge5 compounds, Giant magnetocaloric effect materials, Lanthanide-based single-molecule magnets, and Magnetic Refrigeration with Lanthanide-Based Materials. - Presents up-to-date overviews and new developments in the field of rare earths, covering both their physics and chemistry - Contains individual chapters that are comprehensive and broad, along with critical reviews - Provides contributions from highly experienced, invited experts
This book provides the latest research on a new alternative form of technology, the magnetocaloric energy conversion. This area of research concerns magnetic refrigeration and cooling, magnetic heat pumping and magnetic power generation. The book’s systematic approach offers the theoretical basis of magnetocaloric energy conversion and its various sub domains and this is supported with the practical examples. Besides these fundamentals, the book also introduces potential solutions to engineering problems in magnetocalorics and to alternative technologies of solid state energy conversion. The aim of the book is therefore to provide engineers with the most up-to-date information and also to ...
This work introduces into the chemistry, materials science and technology of Rare Earth Elements. The chapters by experienced lecturers describe comprehensively the recent studies of their characteristics, properties and applications in functional materials. Due to the broad range of covered topics as hydrogen storage materials, LEDs or permanent magnets this work gives an up-to-date presentation of this fascinating research.
One of the motivating questions in materials research today is, how can elements be combined to produce a solid with specified properties? This book is intended to acquaint the reader with established principles of crystallography and cohesive forces that are needed to address the fundamental relationship between the composition, structure and bonding. Starting with an introduction to periodic trends, the book discusses crystal structures and the various primary and secondary bonding types, and finishes by describing a number of models for predicting phase stability and structure. Containing a large number of worked examples, exercises, and detailed descriptions of numerous crystal structures, this book is primarily intended as an advanced undergraduate or graduate level textbook for students of materials science. It will also be useful to scientists and engineers who work with solid materials.
None