You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Presently, general-purpose optimization techniques such as Simulated Annealing, and Genetic Algorithms, have become standard optimization techniques. Concerted research efforts have been made recently in order to invent novel optimization techniques for solving real life problems, which have the attributes of memory update and population-based search solutions. The book describes a variety of these novel optimization techniques which in most cases outperform the standard optimization techniques in many application areas. New Optimization Techniques in Engineering reports applications and results of the novel optimization techniques considering a multitude of practical problems in the different engineering disciplines – presenting both the background of the subject area and the techniques for solving the problems.
An overview of the rapidly growing field of ant colony optimization that describes theoretical findings, the major algorithms, and current applications. The complex social behaviors of ants have been much studied by science, and computer scientists are now finding that these behavior patterns can provide models for solving difficult combinatorial optimization problems. The attempt to develop algorithms inspired by one aspect of ant behavior, the ability to find what computer scientists would call shortest paths, has become the field of ant colony optimization (ACO), the most successful and widely recognized algorithmic technique based on ant behavior. This book presents an overview of this r...
This book provides a collection of fourty articles containing new material on both theoretical aspects of Evolutionary Computing (EC), and demonstrating the usefulness/success of it for various kinds of large-scale real world problems. Around 23 articles deal with various theoretical aspects of EC and 17 articles demonstrate the success of EC methodologies. These articles are written by leading experts of the field from different countries all over the world.
This book constitutes the thoroughly refereed post-proceedings of three workshops and an industrial track held in conjunction with the 11th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2007, held in Nanjing, China in May 2007. The 62 revised full papers presented together with an overview article to each workshop were carefully reviewed and selected from 355 submissions.
This book constitutes the refereed proceedings of the 14th International Conference on Metaheuristics, MIC 2022, held in Syracuse, Italy, in July 2022. The 48 full papers together with 17 short papers presented were carefully reviewed and selected from 72 submissions. The papers detail metaheuristic techniques. Chapter “Evaluating the Effects of Chaos in Variable Neighbourhood Search” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Developments in metaheuristics continue to advance computation beyond its traditional methods. With groundwork built on multidisciplinary research findings; metaheuristics, algorithms, and optimization approaches uses memory manipulations in order to take full advantage of strategic level problem solving. Trends in Developing Metaheuristics, Algorithms, and Optimization Approaches provides insight on the latest advances and analysis of technologies in metaheuristics computing. Offering widespread coverage on topics such as genetic algorithms, differential evolution, and ant colony optimization, this book aims to be a forum researchers, practitioners, and students who wish to learn and apply metaheuristic computing.
LION 3, the Third International Conference on Learning and Intelligent Op- mizatioN, was held during January 14–18 in Trento, Italy. The LION series of conferences provides a platform for researchers who are interested in the int- section of e?cient optimization techniques and learning. It is aimed at exploring the boundaries and uncharted territories between machine learning, arti?cial intelligence, mathematical programming and algorithms for hard optimization problems. The considerable interest in the topics covered by LION was re?ected by the overwhelming number of 86 submissions, which almost doubled the 48 subm- sions received for LION’s second edition in December 2007. As in the ?rst two editions, the submissions to LION 3 could be in three formats: (a) original novel and unpublished work for publication in the post-conference proceedings, (b) extended abstracts of work-in-progressor a position statement, and (c) recently submitted or published journal articles for oral presentations. The 86 subm- sions received include 72, ten, and four articles for categories (a), (b), and (c), respectively.
This book constitutes the post-conference proceedings of the 5th International Conference on Machine Learning, Optimization, and Data Science, LOD 2019, held in Siena, Italy, in September 2019. The 54 full papers presented were carefully reviewed and selected from 158 submissions. The papers cover topics in the field of machine learning, artificial intelligence, reinforcement learning, computational optimization and data science presenting a substantial array of ideas, technologies, algorithms, methods and applications.
This book constitutes the proceedings of the 18th International Conference on Mathematical Optimization Theory and Operations Research, MOTOR 2019, held in Ekaterinburg, Russia, in July 2019. The 48 full papers presented in this volume were carefully reviewed and selected from 170 submissions. MOTOR 2019 is a successor of the well-known International and All-Russian conference series, which were organized in Ural, Siberia, and the Far East for a long time. The selected papers are organized in the following topical sections: mathematical programming; bi-level optimization; integer programming; combinatorial optimization; optimal control and approximation; data mining and computational geometry; games and mathematical economics.
The inspiration from Biology and the Natural Evolution process has become a research area within computer science. For instance, the description of the arti?cial neuron given by McCulloch and Pitts was inspired from biological observations of neural mechanisms; the power of evolution in nature in the diverse species that make up our world has been related to a particular form of problem solving based on the idea of survival of the ?ttest; similarly, - ti?cial immune systems, ant colony optimisation, automated self-assembling programming, membrane computing, etc. also have their roots in natural phenomena. The ?rst and second editions of the International Workshop on Nature Inspired Cooperati...