You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
With applications in quantum field theory, general relativity and elementary particle physics, this three-volume work studies the invariance of differential operators under Lie algebras, quantum groups and superalgebras. This second volume covers quantum groups in their two main manifestations: quantum algebras and matrix quantum groups. The exposition covers both the general aspects of these and a great variety of concrete explicitly presented examples. The invariant q-difference operators are introduced mainly using representations of quantum algebras on their dual matrix quantum groups as carrier spaces. This is the first book that covers the title matter applied to quantum groups. Contents Quantum Groups and Quantum Algebras Highest-Weight Modules over Quantum Algebras Positive-Energy Representations of Noncompact Quantum Algebras Duality for Quantum Groups Invariant q-Difference Operators Invariant q-Difference Operators Related to GLq(n) q-Maxwell Equations Hierarchies
With applications in quantum field theory, elementary particle physics and general relativity, this two-volume work studies invariance of differential operators under Lie algebras, quantum groups, superalgebras including infinite-dimensional cases, Schrödinger algebras, applications to holography. This first volume covers the general aspects of Lie algebras and group theory supplemented by many concrete examples for a great variety of noncompact semisimple Lie algebras and groups. Contents: Introduction Lie Algebras and Groups Real Semisimple Lie Algebras Invariant Differential Operators Case of the Anti-de Sitter Group Conformal Case in 4D Kazhdan–Lusztig Polynomials, Subsingular Vectors, and Conditionally Invariant Equations Invariant Differential Operators for Noncompact Lie Algebras Parabolically Related to Conformal Lie Algebras Multilinear Invariant Differential Operators from New Generalized Verma Modules Bibliography Author Index Subject Index
This monograph describes some of the most interesting results obtained by the mathematicians and physicists collaborating in the CRC 647 "Space – Time – Matter", in the years 2005 - 2016. The work presented concerns the mathematical and physical foundations of string and quantum field theory as well as cosmology. Important topics are the spaces and metrics modelling the geometry of matter, and the evolution of these geometries. The partial differential equations governing such structures and their singularities, special solutions and stability properties are discussed in detail. Contents Introduction Algebraic K-theory, assembly maps, controlled algebra, and trace methods Lorentzian mani...
With applications in quantum field theory, general relativity and elementary particle physics, this four-volume work studies the invariance of differential operators under Lie algebras, quantum groups and superalgebras. This third volume covers supersymmetry, including detailed coverage of conformal supersymmetry in four and some higher dimensions, furthermore quantum superalgebras are also considered. Contents Lie superalgebras Conformal supersymmetry in 4D Examples of conformal supersymmetry for D > 4 Quantum superalgebras
The book describes how field-charges, split into isotopic pairs, can commute and identifies the group of transformations that governs this exchange between their states. Invariance under this group is defined as Hypersymmetry. The book develops the physical consequences of Hypersymmetry such as conserved property, quanta and mediating bosons of the interaction field. Since all this expands beyond the standard model, the work determines the energy limits of the applicability of Hypersymmetry and discusses, how to remove the unwanted mass of the predicted set of bosons. Finally, it presents how the model can be applied in the four fundamental interactions. • Comprehensive work covering recent research. • Detailed calculations for a step by step understanding. • Useful reading for master students and researchers in theoretical and experimental physics. • A practical textbook for courses on the physics of the isotopic field-charges, their conservation and interactions.
The book employs oscillatory dynamical systems to represent the Universe mathematically via constructing classical and quantum theory of damped oscillators. It further discusses isotropic and homogeneous metrics in the Friedman-Robertson-Walker Universe and shows their equivalence to non-stationary oscillators. The wide class of exactly solvable damped oscillator models with variable parameters is associated with classical special functions of mathematical physics. Combining principles with observations in an easy to follow way, it inspires further thinking for mathematicians and physicists. Contents Part I: Dissipative geometry and general relativity theory Pseudo-Riemannian geometry and ge...
Groups and Manifolds is an introductory, yet a complete self-contained course on mathematics of symmetry: group theory and differential geometry of symmetric spaces, with a variety of examples for physicists, touching briefly also on super-symmetric field theories. The core of the course is focused on the construction of simple Lie algebras, emphasizing the double interpretation of the ADE classification as applied to finite rotation groups and to simply laced simple Lie algebras. Unique features of this book are the full-fledged treatment of the exceptional Lie algebras and a rich collection of MATHEMATICA Notebooks implementing various group theoretical constructions.
This volume contains the current research in quantum probability, infinite dimensional analysis and related topics. Contributions by experts in these fields highlight the latest developments and interdisciplinary connections with classical probability, stochastic analysis, white noise analysis, functional analysis and quantum information theory. This diversity shows how research in quantum probability and infinite dimensional analysis is very active and strongly involved in the modern mathematical developments and applications. Tools and techniques presented here will be of great value to researchers.
There is an apparent trend towards geometrization of physical theories. During the last 20 years, the most successful mathematical models for the description and understanding of physical systems have been based on the Lie theory in its widest sense and various generalizations, for example, deformations of it.This proceedings volume reflects part of the development. On the mathematical side, they report on representations of Lie algebras, quantization procedures, non-commutative geometry, quantum groups, etc. Furthermore, possible physical applications of these techniques are discussed (e.g. quantization of classical systems, derivations of evolution equations, discrete and deformed physical systems).This volume complements the book Generalized Symmetries in Physics, published by World Scientific in 1994.
This volume gives a representative survey of recent developments in relativistic and non-relativistic quantum theory, which are related to the application of symmetries in their most general sense. The corresponding mathematical notions are centered upon groups, algebras and their generalizations, and are applied in interaction with topology, differential geometry, functional analysis and related fields. Special emphasis is on results in the following areas: quantization methods, nonlinear evolution equations, foundation of quantum physics, algebraic quantum field theory, gauge and string theories, quantum information, quantum groups, discrete symmetries.