You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Vladimir Gribov was one of the founding fathers of high-energy elementary particle physics. This volume derives from a graduate lecture course he delivered in the 1970s. It provides graduate students and researchers with the opportunity to learn from the teaching of one of the twentieth century's greatest physicists. Its content is still deeply relevant to modern research, for example exploring properties of the relativistic theory of hadron interactions in a domain of peripheral collisions and large distances that quantum chromodynamics has barely approached. In guiding the reader step-by-step from the basics of quantum mechanics and relativistic kinematics to the most challenging problems of high-energy hadron interactions with simplifying models and physical analogies, it demonstrates general methods of addressing difficult problems in theoretical physics. Covering a combination of topics not treated elsewhere, this 2008 title has been reissued as an Open Access publication on Cambridge Core.
This book deals with the Rus annals (letopisi) and with a variety of related texts concerning the historical past. A new typology of those texts is introduced, together with a comprehensive discussion of how the writing of history came into being in Rus between c.1000 and c.1050. The author focuses on the work of the annalists of Novgorod from c. 1045 to c. 1400, and discusses the functions of annalistic writing in the Rus society. Both the character and the role of the writing of history in Rus is highlighted by means of comparison with other political and cultural areas of medieval Europe, particularly with Anglo-Saxon England.
Attitude Dynamics and Control of Space Debris During Ion Beam Transportation provides an overview of the cutting-edge research around the topic of contactless ion beam transportation for the removal of space debris. This practical guide covers topics such as space debris attitude motion, the motion of rigid materials in an inhomogeneous high-speed rarefied medium, gravity gradient torque, and more. The book examines and compares the various ways to control the spatial motion of space debris, such as engine thrust or altering the direction of the ion beam axis, and offers simple mathematical models for analyzing system behaviors. - Provides insight on the features, advantages, and disadvantages of contactless ion beam transportation of space debris - Demonstrates how classical mechanics, nonlinear and chaotic dynamics, and methods of stability theory are applied during the ion beam method - Includes simple mathematical models describing the behavior of the considered mechanical system, allowing the reader to understand the nature of the studied phenomenon
ICTAEM_1 treated all aspects of theoretical, applied and experimental mechanics including biomechanics, composite materials, computational mechanics, constitutive modeling of materials, dynamics, elasticity, experimental mechanics, fracture, mechanical properties of materials, micromechanics, nanomechanics, plasticity, stress analysis, structures, wave propagation. During the conference special symposia covering major areas of research activity organized by members of the Scientific Advisory Board took place. ICTAEM_1 brought together the most outstanding world leaders and gave attendees the opportunity to get acquainted with the latest developments in the area of mechanics. ICTAEM_1 is a forum of university, industry and government interaction and serves in the exchange of ideas in an area of utmost scientific and technological importance.
This book presents a new approach to the study of global environmental changes that have unfavorable implications for people and other living systems. The book benefits from the accumulation of knowledge from different sciences. Basic global problems of the nature-society system dynamics are considered. The book aims to develop a universal information technology to estimate the state of environmental subsystems functioning under various climatic and anthropogenic conditions.
Large-scale natural catastrophes are environmental phenomena. Numerous studies in recent years have concluded that the frequency of occurrence of such natural disasters have been incereasing. leading to an enhanced risk of very considerable human and economic losses and the widespread destruction and pollution of habitats, settlements and infrastructure. In 2001 over 650 natural disasters happened around the globe with economic losses exceeding $35 billion. 2004 ended with the South East Asian tsunami on 26th December with its huge toll on life and local economics and this demonstrated that the efffects of such disasters are most keenly felt in poorer or developing regions. The problem of natural disaster prediction and the implementation of environmental monitoring systems to receive, store and process the information necessary for solutions of specific problems in this area , have been analysed by the three authors of this book, all of whom are internationally respected experts in this field.
This book provides the first comprehensive analysis of how aerosols form in the atmosphere through in situ processes as well as via transport from the surface (dust storms, seas spray, biogenic emissions, forest fires etc.). Such an analysis has been followed by the consideration of both observation data (various field observational experiments) and numerical modeling results to assess climate impacts of aerosols bearing in mind that these impacts are the most significant uncertainty in studying natural and anthropogenic causes of climate change.