You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Multiphoton ionization of atoms in intense laser-light fields is gaining ground as a spectroscopic diagnostic tool. In this volume, Delone and Krainov present their and others' theoretical description of the process occurring in atoms under conditions of multi-photon impacts, in particular, the shift, broadening, and mixing of electronic states which complicate the interpretation of spectra. The topics of individual chapters include tunneling ionization, above-threshold ionization, ionization of multiply charged ions, resonance-enhenced ionization, super-intense radiation fields, and properties of Rydberg states in strong fields.
This book has evolved from lectures devoted to applications of the Wentzel - Kramers – Brillouin- (WKB or quasi-classical) approximation and of the method of 1/N −expansion for solving various problems in atomic and nuclear physics. The intent of this book is to help students and investigators in this field to extend their knowledge of these important calculation methods in quantum mechanics. Much material is contained herein that is not to be found elsewhere. WKB approximation, while constituting a fundamental area in atomic physics, has not been the focus of many books. A novel method has been adopted for the presentation of the subject matter, the material is presented as a succession of problems, followed by a detailed way of solving them. The methods introduced are then used to calculate Rydberg states in atomic systems and to evaluate potential barriers and quasistationary states. Finally, adiabatic transition and ionization of quantum systems are covered.
Selected Mathematical Methods in Theoretical Physics shows how a scientist, knowing the answer to a problem intuitively or through experiment, can develop a mathematical method to prove that answer. The approach adopted by the author first involves the formulation of differential or integral equations for describing the physical procession, the basis of more general physical laws. Then the approximate solution of these equations is worked out, using small dimensionless physical parameters, or using numerical parameters for the objects under consideration. The eleven chapters of the book, which can be read in sequence or studied independently of each other, contain many examples of simple physical models, as well as problems for students to solve. This is a supplementary textbook for advanced university students in theoretical physics. It will enrich the knowledge of students who already have a solid grounding in mathematical analysis.
Dimensional and order-of-magnitude estimates are practiced by almost everybody but taught almost nowhere. When physics students engage in their first theoretical research project, they soon learn that exactly solvable problems belong only to textbooks, that numerical models are long and resource consuming, and that 'something else' is needed to quickly gain insight into the system they are going to study. Qualitative methods are this 'something else', but typically, students have never heard of them before.The aim of this book is to teach the craft of qualitative analysis using a set of problems, some with solutions and some without, in advanced undergraduate and beginning graduate Quantum M...
Market: Graduate students and researchers in physical kinetics, hydrodynamics, and plasma and solid state physics. Vladimir Krainov has produced one of the few books in the field to concentrate on qualitative methods. He presents order of magnitude solutions for physical quantities in various nonequilibrium statistical processes as well as qualitative solutions of differential equations for macroscopic nonequilibrium processes in gases and other media. Covers topics including free convection, turbulence phenomena, sound propagation, and surface phenomena.
This book offers advanced students and researchers an up-to-date quantum treatment of the interaction of atoms with electromagnetic radiation. Problems and solutions are used to develop concepts, terminology, and the principal results of the quantum theory of radiative processes in atoms. Concepts covered include: radiative transitions between discrete states in atomic systems, atomic photoprocesses involving free particles, coherent phenomena in radiative transitions, extensive treatment of line-broadening mechanisms, atoms in strong fields and theory of angular momentum.
Multiphoton Processes in Atoms in intense laser-light fields is gaining ground as a spectroscopic diagnostic tool. The authors present descriptions of processes occurring in atoms under the action of strong electromagnetic radiation, in particular, the shift, broadening, and mixing of atomic states. The topics include tunneling ionization, above-threshold ionization, ionization of multiply charged ions, resonance-enhanced ionization, super-intense radiation fields, and properties of Rydberg states strongly perturbed by laser radiation.
This book presents a detailed, modern description of the ionization of atoms by strong laser radiation. The authors present descriptions of processes occurring in atoms under the action of strong electromagnetic radiation, in particular, the shift, broadening, and mixing of atomic states. The topics include tunneling ionization, above-threshold ionization, ionization of multiply charged ions, resonance-enhanced ionization, super-intense radiation fields, and properties of Rydberg states strongly perturbed by laser radiation.
Beginning from first principles and adopting a modular structure, this book develops the fundamental physical methods needed to describe and understand a wide range of seemingly very diverse astrophysical phenomena and processes. For example, the discussion of radiation processes including their spectra is based on Larmor's equation and extended by the photon picture and the internal dynamics of radiating quantum systems, leading to the shapes of spectral lines and the ideas of radiation transport. Hydrodynamics begins with the concept of phase-space distribution functions and Boltzmann's equation and develops ideal, viscous and magneto-hydrodynamics all from the vanishing divergence of an e...