You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The stories of Vladimir Torchilin, representing the irrationality and phantasmagorical nature of everyday life both in Russia and in America, reveal the difficult world of the people of our time. The writer’s gaze sharply notices the details – sometimes funny, sometimes tragic. Written in a lively, fascinating, and often ironic way, these stories are easy to read and at the same time make you think.
Written by key experts in the field of nanomedicine, this book provides a broad introduction to the important field of nanomedicine and application of nanotechnology for drug delivery. It covers up-to-date information regarding various nanoparticulate drug delivery systems, describes the various opportunities for the application of nanoparticular drug carriers in different areas of clinical medicine, and analyzes already available information on their clinical applications. This book can be used as an advanced textbook by graduate students and young scientists and clinicians at the early stages of their career. It is also suitable for non-experts from related areas of chemistry, biochemistry...
In the fast-developing field of nanomedicine, a broad variety of materials have been used for the development of advanced delivery systems for drugs, genes, and diagnostic agents. With the recent breakthroughs in the field, we are witnessing a new age of disease management, which is governed by precise regulation of dosage and delivery. This book presents the advances in the use of polymeric nanomaterials for medical imaging, diagnosis, theranostics, and drug delivery. Beginning with the combinatorial approach for polymer design, it discusses star-shaped amphiphilic polymers, self-assembling polymer–drug conjugates, amphiphilic dendrimers, dendrimer nanohybrids, sustainable green polymeric nanoconstructs, chitosan-based nanogels, and multifunctional hybrid nanogels. The book provides all available information about these materials and describes in detail their advantages and disadvantages and the areas where they could be utilized successfully.
The fast developing field of nanomedicine uses a broad variety of materials to serve as delivery systems for drugs, genes, and diagnostic agents. This book is the first attempt to put under one cover all major available information about these materials, both still on experimental levels and already applied in patients.
This book is an up-to-date and unique collection of experimental protocols from an area of pharmaceutical research that is essential for the development of new, highly specific drugs as well as for the exploration of completely new therapeutic approaches to disease treatments.
The editors have brought together leading experts in multifunctional nanopharmaceuticals to provide cutting edge information; a critical overview of the field; and analysis of current and potential future developments to speed the subject’s rapid development.
Nucleic acid (NA) therapeutics has been extensively studied both in the academia and in the pharmaceutical industry and is still considered the promise for new therapeutic modalities, especially in personalized medicine. The only hurdle that limits the translation of NA therapeutics from an academic idea to the new therapeutic modality is the lack of efficient and safe delivery strategies. Nanotechnology for the Delivery of Therapeutic Nucleic Acids, written by world experts in the field of nanotechnology for NA delivery, the contributing authors bring together the state of the art in delivery strategies with strong emphasis on aspects that are of essence to the pharmaceutical industry, such as stability, general toxicity, immune-toxicity, pharmacokinetics, efficacy, and validation of new drug targets using unique approaches based on exquisite nanotechnology strategies.
The response to environmental and internal stimuli is one of the basic characteristics of living organisms. Inspired by this natural strategy and fast-developing nanotechnology and materials science, stimuli-responsive nanomedicine has emerged as an active and important field of nanomedicine. This book offers a fundamental and comprehensive overview of stimuli-responsive nanomedicine and compiles and details the recent cutting-edge findings and most impressive achievements in biomedical applications, from a pharmaceutical science perspective, making it the first book of its kind in this field. By providing readers a broad and in-depth coverage of endogenous and exogenous stimuli as well as their applicable nanomedicines, this book is valuable for students, researchers, and educators in biomedical sciences or anyone interested in this burgeoning field.
This book draws together recent data on both cytoplasmic and flagellar dyneins and the proteins they interact with, to give the reader a clear picture of what is currently known about the structure and mechanics of these remarkable macro-molecular machines. Each chapter is written by active researchers, with a focus on currently used biophysical, biochemical, and cell biological methods. In addition to comprehensive coverage of structural information gained by electron microscopy, electron cryo-tomography, X-ray crystallography, and nuclear magnetic resonance, this book provides detailed descriptions of mechanistic experiments by single-molecule nanometry.
In the fast-developing field of nanomedicine, a broad variety of materials have been used for the development of advanced delivery systems for drugs, genes, and diagnostic agents. With the recent breakthroughs in the field, we are witnessing a new age of disease management, which is governed by precise regulation of dosage and delivery. This book presents the advances in the use of lipid-based and inorganic nanomaterials for medical imaging, diagnosis, theranostics, and drug delivery. The materials discussed include liposome-scaffold systems, elastic liposomes, targeted liposomes, solid lipid nanoparticles, lipoproteins, exosomes, porous inorganic nanomaterials, silica nanoparticles, and inorganic nanohybrids. The book provides all available information about them and describes in detail their advantages and disadvantages and the areas where they could be utilized successfully.