You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
"Optimization and Regularization for Computational Inverse Problems and Applications" focuses on advances in inversion theory and recent developments with practical applications, particularly emphasizing the combination of optimization and regularization for solving inverse problems. This book covers both the methods, including standard regularization theory, Fejer processes for linear and nonlinear problems, the balancing principle, extrapolated regularization, nonstandard regularization, nonlinear gradient method, the nonmonotone gradient method, subspace method and Lie group method; and the practical applications, such as the reconstruction problem for inverse scattering, molecular spectr...
This book constitutes revised and selected papers from the 18th International Conference on Mathematical Optimization Theory and Operations Research, MOTOR 2019, held in Ekaterinburg, Russia, in July 2019. The 40 full papers and 4 short papers presented in this volume were carefully reviewed and selected from a total of 170 submissions. The papers in the volume are organised according to the following topical headings: combinatorial optimization; game theory and mathematical economics; data mining and computational geometry; integer programming; mathematical programming; operations research; optimal control and applications.
This book constitutes the refereed proceedings of the 22nd International Conference on Mathematical Optimization Theory and Operations Research, MOTOR 2023, held in Ekaterinburg, Russia, during July 2–8, 2023. The 28 full papers and 1 short paper included in this book were carefully reviewed and selected from 89 submissions. They were organized in topical sections as follows: Mathematical programming and applications; discrete and combinatorial optimization; stochastic optimization; scheduling; game theory; and optimal control and mathematical economics. The book also contains one invited talk in full paper length.
The book covers fundamentals of the theory of optimal methods for solving ill-posed problems, as well as ways to obtain accurate and accurate-by-order error estimates for these methods. The methods described in the current book are used to solve a number of inverse problems in mathematical physics. Contents Modulus of continuity of the inverse operator and methods for solving ill-posed problems Lavrent’ev methods for constructing approximate solutions of linear operator equations of the first kind Tikhonov regularization method Projection-regularization method Inverse heat exchange problems
This monograph is a revised and extended version of the Russian edition from 1978. It includes the general theory of linear ill-posed problems concerning e. g. the structure of sets of uniform regularization, the theory of error estimation, and the optimality method. As a distinguishing feature the book considers ill-posed problems not only in Hilbert but also in Banach spaces. It is natural that since the appearance of the first edition considerable progress has been made in the theory of inverse and ill-posed problems as wall as in ist applications. To reflect these accomplishments the authors included additional material e. g. comments to each chapter and a list of monographs with annotations.
The Inverse and Ill-Posed Problems Series is a series of monographs publishing postgraduate level information on inverse and ill-posed problems for an international readership of professional scientists and researchers. The series aims to publish works which involve both theory and applications in, e.g., physics, medicine, geophysics, acoustics, electrodynamics, tomography, and ecology.
Machine learning is a relatively new field, without a unanimous definition. In many ways, actuaries have been machine learners. In both pricing and reserving, but also more recently in capital modelling, actuaries have combined statistical methodology with a deep understanding of the problem at hand and how any solution may affect the company and its customers. One aspect that has, perhaps, not been so well developed among actuaries is validation. Discussions among actuaries’ “preferred methods” were often without solid scientific arguments, including validation of the case at hand. Through this collection, we aim to promote a good practice of machine learning in insurance, considering the following three key issues: a) who is the client, or sponsor, or otherwise interested real-life target of the study? b) The reason for working with a particular data set and a clarification of the available extra knowledge, that we also call prior knowledge, besides the data set alone. c) A mathematical statistical argument for the validation procedure.