You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Georg Cantor, the founder of set theory, published his last paper on sets in 1897. In 1900, David Hilbert made Cantor's Continuum Problem and the challenge of well-ordering the real numbers the first problem in his famous Paris lecture. It was time for the appearance of the second generation of Cantorians. They emerged in the decade 1900-1909, and foremost among them were Ernst Zermelo and Felix Hausdorff. Zermelo isolated the Choice Principle, proved that every set could be well-ordered, and axiomatized the concept of set. He became the father of abstract set theory. Hausdorff eschewed foundations and pursued set theory as part of the mathematical arsenal. He was recognized as the era's leading Cantorian. From 1901-1909, Hausdorff published seven articles in which he created a representation theory for ordered sets and investigated sets of real sequences partially ordered by eventual dominance, together with their maximally ordered subsets. These papers are translated and appear in this volume. Each is accompanied by an introductory essay. These highly accessible works are of historical significance, not only for set theory, but also for model theory, analysis and algebra.
Joseph W. Dauben, a leading authority on the history of mathematics in Europe, China, and North America, has played a pivotal role in promoting international scholarship over the last forty years. This Festschrift volume, showcasing recent historical research by leading experts on three continents, offers a global perspective on important themes in this field.
Historian David E. Rowe captures the rich tapestry of mathematical creativity in this collection of essays from the “Years Ago” column of The Mathematical Intelligencer. With topics ranging from ancient Greek mathematics to modern relativistic cosmology, this collection conveys the impetus and spirit of Rowe’s various and many-faceted contributions to the history of mathematics. Centered on the Göttingen mathematical tradition, these stories illuminate important facets of mathematical activity often overlooked in other accounts. Six sections place the essays in chronological and thematic order, beginning with new introductions that contextualize each section. The essays that follow re...
This study discusses the history of the central limit theorem and related probabilistic limit theorems from about 1810 through 1950. In this context the book also describes the historical development of analytical probability theory and its tools, such as characteristic functions or moments. The central limit theorem was originally deduced by Laplace as a statement about approximations for the distributions of sums of independent random variables within the framework of classical probability, which focused upon specific problems and applications. Making this theorem an autonomous mathematical object was very important for the development of modern probability theory.
This book describes two stages in the historical development of the notion of mathematical structures: first, it traces its rise in the context of algebra from the mid-1800s to 1930, and then considers attempts to formulate elaborate theories after 1930 aimed at elucidating, from a purely mathematical perspective, the precise meaning of this idea.
In this volume specialists in mathematics, physics, and linguistics present the first comprehensive analysis of the ideas and influence of Hermann G. Graßmann (1809-1877), the remarkable universalist whose work recast the foundations of these disciplines and shaped the course of their modern development.
This collection makes available, in one place, the very best essays on the founding father of phenomenology, reprinting key writings on Husserl's thought from the past seventy years. It draws together a range of writings, many otherwise inaccessible, that have been recognized as seminal contributions not only to an understanding of this great philosopher but also to the development of his phenomenology. The four volumes are arranged as follows: Volume I Classic essays from Husserl's assistants, students and earlier interlocutors. Including a selection of papers from such figures as Heidegger, Merleau-Ponty, Sartre, Ricoeur and Levinas. Volume II Classic commentaries on Husserl's published wo...
A companion publication to the international exhibition "Transcending Tradition: Jewish Mathematicians in German-Speaking Academic Culture", the catalogue explores the working lives and activities of Jewish mathematicians in German-speaking countries during the period between the legal and political emancipation of the Jews in the 19th century and their persecution in Nazi Germany. It highlights the important role Jewish mathematicians played in all areas of mathematical culture during the Wilhelmine Empire and the Weimar Republic, and recalls their emigration, flight or death after 1933.
Cover -- Title page -- Contents -- Preface -- Acknowledgments -- Photograph and Figure Credits -- Chapter 1. An overview of American mathematics: 1776-1876 -- Chapter 2. A new departmental prototype: J.J. Sylvester and the Johns Hopkins University -- Chapter 3. Mathematics at Sylvester's Hopkins -- Chapter 4. German mathematics and the early mathematical career of Felix Klein -- Chapter 5. America's wanderlust generation -- Chapter 6. Changes on the horizon -- Chapter 7. The World's Columbian exposition of 1893 and the Chicago mathematical congress -- Chapter 8. Surveying mathematical landscapes: The Evanston colloquium lectures -- Chapter 9. Meeting the challenge: The University of Chicago and the American mathematical research community -- Chapter 10. Epilogue: Beyond the threshold: The American mathematical research community, 1900-1933 -- Bibliography -- Subject Index -- Back Cover