You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains selected papers presented at the 42nd Biennial Meeting of the Kolloid-Gesellschaft held at the RWTH Aachen University September 26-28, 2005. The contributions in this volume represent the diversity of research topics in colloid and polymer science. They include the investigation of synthesis and properties of advanced temperature sensitive particles and their biomedical applications, drug delivery systems, foams, capsules, vesicles and gels, polyelectrolytes, nanoparticles surfactants and hybrid materials.
Microgels by Precipitation Polymerization: Synthesis, Characterization, and Functionalization, by A. Pich and W. Richtering * Hydrogels in Miniemulsions, by K. Landfester and A. Musyanovych * Nano- and Microgels Through Addition Reactions of Functional Oligomers and Polymers, by K. Albrecht, M. Moeller, and J. Groll * Synthesis of Microgels by Radiation Methods, by F. Krahl and K.-F. Arndt * Microgels as Nanoreactors: Applications in Catalysis, by N. Welsch, M.s Ballauff, and Y. Lu
This volume of Progress in Colloid and Polymer Science assembles original contributions and invited reviews from the priority research program "Intelligent Hydrogels", funded by the German Science Foundation DFG since 2006, with about 25 contributing research groups. In the center of interest of this program and the present book are responsive hydrogels, i.e. hydrophilic polymer or polyelectrolyte networks that are able to respond to environmental stimuli such as changes in temperature, pH, additive concentration or electrical field. The activities focus on different aspects: on hydrogel synthesis, on the modeling and simulation of thermophysical hydrogel properties, as well as on innovative new hydrogel applications as smart materials. The present book summarizes the highlights in the results of the priority program in original contributions and invited reviews.
With the emergence of additive manufacturing, mass customization of biomaterials for complex tissue regeneration and targeted drug delivery applications is possible. This book emphasizes the fundamental concepts of biomaterials science, their structure–property relationships and processing methods, and biological responses in biomedical engineering. It focuses on recent advancements in biomedical applications, such as tissue engineering, wound healing, drug delivery, cancer treatments, bioimaging, and theranostics. This book: Discusses design chemistry, modification, and processing of biomaterials Describes the efficacy of biomaterials at various scales for biological response and drug delivery Demonstrates technological advances from conventional to additive manufacturing Covers future of biofabrication and customized medical devices This volume serves as a go-to reference on functional biomaterials and is ideal for multi-disciplinary communities such as students and research professionals in materials science, biomedical engineering, healthcare, and medical fields.
This book bridges three different fields: nanoscience, bioscience, and environmental sciences. It starts with fundamental electrostatics at interfaces and includes a detailed description of fundamental theories dealing with electrical double layers around a charged particle, electrokinetics, and electrical double layer interaction between charged particles. The stated fundamentals are provided as the underpinnings of sections two, three, and four, which address electrokinetic phenomena that occur in nanoscience, bioscience, and environmental science. Applications in nanomaterials, fuel cells, electronic materials, biomaterials, stems cells, microbiology, water purificiaion, and humic substances are discussed.
The progress in polymer science is revealed in the chapters of Polymer Science: A Comprehensive Reference, Ten Volume Set. In Volume 1, this is reflected in the improved understanding of the properties of polymers in solution, in bulk and in confined situations such as in thin films. Volume 2 addresses new characterization techniques, such as high resolution optical microscopy, scanning probe microscopy and other procedures for surface and interface characterization. Volume 3 presents the great progress achieved in precise synthetic polymerization techniques for vinyl monomers to control macromolecular architecture: the development of metallocene and post-metallocene catalysis for olefin pol...
This book addresses the possibilities provided by scattering techniques in the study of soft matter. It fills the gap between the fundamental scattering processes, which are described by the general theoretical framework of elastic and quasi-elastic interaction of radiation with matter, and state-of-the-art applications to specific soft matter systems. Three probes are discussed in detail: neutrons, X-ray photons, and visible light. The first part of the book is dedicated to the use of general principles for the measurement and analysis of scattered intensity: elementary scattering process, data reduction, general theorems, the concept of reciprocal space, and its link to structural and dyna...
Smart drug delivery refers to a targeted drug delivery or precision drug delivery system that allows drugs to be administered to a specific location in the body or at a specific time with enhanced precision and control. This approach has several advantages, including maximizing the therapeutic effects of a drug while minimizing side effects. This book presents various stimuli-responsive micro- and nanomaterials for pharmaceutical industries. This volume: Covers the global market perspective of micro- and nano-smart materials in pharmaceutical industries. Details various processing routes. Discusses mechanisms for target release. Addresses applications in oral drug delivery, anticancer agents, anti-tumor drug delivery, and drugs for management of infection. This reference work is written to support researchers in the fields of materials engineering and biotechnology with the goal of improving the diagnosis and treatment of disease and patient quality of life.
Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.
This volume focuses on studies on the frontier between colloid and polymer science and reveals the broad diversity of results in this field. The volume contains papers on micellar systems, mesophases, vesicles, surface films, gels, polymer colloids, nanoparticles, colloid crystals, and adsorbents.