You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Wavelets is a carefully organized and edited collection of extended survey papers addressing key topics in the mathematical foundations and applications of wavelet theory. The first part of the book is devoted to the fundamentals of wavelet analysis. The construction of wavelet bases and the fast computation of the wavelet transform in both continuous and discrete settings is covered. The theory of frames, dilation equations, and local Fourier bases are also presented. The second part of the book discusses applications in signal analysis, while the third part covers operator analysis and partial differential equations. Each chapter in these sections provides an up-to-date introduction to such topics as sampling theory, probability and statistics, compression, numerical analysis, turbulence, operator theory, and harmonic analysis. The book is ideal for a general scientific and engineering audience, yet it is mathematically precise. It will be an especially useful reference for harmonic analysts, partial differential equation researchers, signal processing engineers, numerical analysts, fluids researchers, and applied mathematicians.
Mathematically rigorous monograph on wavelets, written specifically for nonspecialists. Places the reader at the forefront of current research.
This book provides a systematic exposition of the basic ideas and results of wavelet analysis suitable for mathematicians, scientists, and engineers alike. The primary goal of this text is to show how different types of wavelets can be constructed, illustrate why they are such powerful tools in mathematical analysis, and demonstrate their use in applications. It also develops the required analytical knowledge and skills on the part of the reader, rather than focus on the importance of more abstract formulation with full mathematical rigor. These notes differs from many textbooks with similar titles in that a major emphasis is placed on the thorough development of the underlying theory before...
The only introduction to wavelets that doesn't avoid the tough mathematical questions.
A self-contained, elementary introduction to wavelet theory and applications Exploring the growing relevance of wavelets in the field of mathematics, Wavelet Theory: An Elementary Approach with Applications provides an introduction to the topic, detailing the fundamental concepts and presenting its major impacts in the world beyond academia. Drawing on concepts from calculus and linear algebra, this book helps readers sharpen their mathematical proof writing and reading skills through interesting, real-world applications. The book begins with a brief introduction to the fundamentals of complex numbers and the space of square-integrable functions. Next, Fourier series and the Fourier transfor...
This book explains the nature and computation of mathematical wavelets, which provide a framework and methods for the analysis and the synthesis of signals, images, and other arrays of data. The material presented here addresses the au dience of engineers, financiers, scientists, and students looking for explanations of wavelets at the undergraduate level. It requires only a working knowledge or memories of a first course in linear algebra and calculus. The first part of the book answers the following two questions: What are wavelets? Wavelets extend Fourier analysis. How are wavelets computed? Fast transforms compute them. To show the practical significance of wavelets, the book also provid...
The Wavelet Transform has stimulated research that is unparalleled since the invention of the Fast Fourier Transform and has opened new avenues of applications in signal processing, image compression, radiology, cardiology, and many other areas. This book grew out of a short course for mathematics students at the ETH in Zurich; it provides a solid mathematical foundation for the broad range of applications enjoyed by the wavelet transform. Numerous illustrations and fully worked out examples enhance the book.
None
The last 15 years have seen an explosion of interest in wavelets with applications in fields such as image compression, turbulence, human vision, radar and earthquake prediction. Wavelets represent an area that combines signal in image processing, mathematics, physics and electrical engineering. As such, this title is intended for the wide audience that is interested in mastering the basic techniques in this subject area, such as decomposition and compression.
This volume reflects the latest developments in the area of wavelet analysis and its applications. Since the cornerstone lecture of Yves Meyer presented at the ICM 1990 in Kyoto, to some extent, wavelet analysis has often been said to be mainly an applied area. However, a significant percentage of contributions now are connected to theoretical mathematical areas, and the concept of wavelets continuously stretches across various disciplines of mathematics. Key topics: Approximation and Fourier Analysis Construction of Wavelets and Frame Theory Fractal and Multifractal Theory Wavelets in Numerical Analysis Time-Frequency Analysis Adaptive Representation of Nonlinear and Non-stationary Signals Applications, particularly in image processing Through the broad spectrum, ranging from pure and applied mathematics to real applications, the book will be most useful for researchers, engineers and developers alike.