You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Chemists, working with only mortars and pestles, could not get very far unless they had mathematical models to explain what was happening "inside" of their elements of experience -- an example of what could be termed mathematical learning. This volume contains the proceedings of Work Group 4: Theories of Mathematics, a subgroup of the Seventh International Congress on Mathematical Education held at Université Laval in Québec. Bringing together multiple perspectives on mathematical thinking, this volume presents elaborations on principles reflecting the progress made in the field over the past 20 years and represents starting points for understanding mathematical learning today. This volume will be of importance to educational researchers, math educators, graduate students of mathematical learning, and anyone interested in the enterprise of improving mathematical learning worldwide.
Fundamental Constructs in Mathematics Education is a unique sourcebook which has been crafted from a collection of classic tasks, extracts and texts that have been quoted repeatedly in mathematics education literature. Linked together by the editors'' narrative, the book provides a fascinating examination of key constructs in mathematics education. The book is divided into two parts. The first part examines ''thinking about the learner'' and includes the following constructs: constructivisms, activity theory and didactics. Beginning with a chapter dedicated to the classic tasks used by researchers to ''probe'' learners'' understanding, readers are encouraged to try these theories themselves ...
This volume grew out of a symposium on discourse, tools, and instructional design at Vanderbilt University in 1995 that brought together a small international group to grapple with issues of communicating, symbolizing, modeling, and mathematizing, particularly as these issues relate to learning in the classroom. The participants invited to develop chapters for this book--all internationally recognized scholars in their respective fields--were selected to represent a wide range of theoretical perspectives including mathematics education, cognitive science, sociocultural theory, and discourse theory. The work is distinguished by the caliber of the contributors, the significance of the topics a...
Mathematics education research has blossomed into many different areas which we can see in the programmes of the ICME conferences as well as in the various survey articles in the Handbooks. However, all of these lines of research are trying to grapple with a common problem, the complexity of the process of learning mathematics. Although our knowledge of the process is more extensive and deeper despite the fragmented nature of research in this area, there is still a need to overcome this fragmentation and to see learning as one process with different aspects. To overcome this fragmentation, this book identifies six themes: (1) mathematics, culture and society, (2) the structure of mathematics...
This open access book shares revealing insights into the development of mathematics education research in Germany from 1976 (ICME 3 in Karlsruhe) to 2016 (ICME 13 in Hamburg). How did mathematics education research evolve in the course of these four decades? Which ideas and people were most influential, and how did German research interact with the international community? These questions are answered by scholars from a range of fields and in ten thematic sections: (1) a short survey of the development of educational research on mathematics in German speaking countries (2) subject-matter didactics, (3) design science and design research, (4) modelling, (5) mathematics and Bildung 1810 to 185...
Der Band thematisiert aus philosophischer, historischer und aus fachdidaktischer Perspektive Fragen wie: Wie hat sich Mathematik in sozialen und historischen Prozessen entwickelt? Welche Rolle spielt sie in der Entwicklungsgeschichte moderner Gesellschaften? Welche Bedeutung hat Mathematik in heutigen gesellschaftlichen und technischen Prozessen, welche Bildungsansprüche ergeben sich daraus? Lassen sich Parallelen und Unterschiede im Vergleich von historischen Entwicklungen und mathematischen Lernprozessen ausmachen? Was kann Geschichte der Mathematik zum Gelingen des Mathematikunterrichts beitragen? Wie prägen allgemeine mathematische Grundaktivitäten unser (alltägliches) Handeln? Historische, philosophische und didaktische Perspektiven auf Prozesse, in denen Mathematik sowie ihr Lehren und Lernen beteiligt sind, erhellen einander dabei wechselseitig.
None
None
Die fortschreitende Entwicklung der Mathematikdidaktik als Wissenschaft begründet sich unter anderem in der fruchtbaren Anwendung unterschiedlicher allgemeiner Ansätze zur Beschreibung des Lernens und zur Organisation des Lehrens von Mathematik. Seit mehr als einem Jahrzehnt nimmt unter diesen Ansätzen die Semiotik, also die Theorie der Zeichen, einen Platz von zunehmender Bedeutung ein. Der vorliegende Band trägt dieser Entwicklung Rechnung und entwirft in einer Reihe von Beiträgen Perspektiven auf die Mathematikdidaktik. Dazu zählen unter anderem Überlegungen zu ontologischen und historischen Fragestellungen, Texte zur Visualisierung von Mathematik oder Ausführungen zum Verhältnis von Sprache und Verstehen von Mathematik.