You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book constitutes the proceedings of the 22st International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, SAMOS 2021, which took place in July 2022 in Samos, Greece. The 11 full papers and 7 short papers presented in this volume were carefully reviewed and selected from 45 submissions. The conference covers a wide range of embedded systems design aspects, including machine learning accelerators, and power management and programmable dataflow systems.
This book constitutes the refereed proceedings of the 20th International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, SAMOS 2020, held in Samos, Greece, in July 2020.* The 16 regular papers presented were carefully reviewed and selected from 35 submissions. In addition, 9 papers from two special sessions were included, which were organized on topics of current interest: innovative architectures for security and European projects on embedded and high performance computing for health applications. * The conference was held virtually due to the COVID-19 pandemic.
This book constitutes the refereed proceedings of the 19th International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, SAMOS 2019, held in Pythagorion, Samos, Greece, in July 2019. The 21 regular papers presented were carefully reviewed and selected from 55 submissions. The papers are organized in topical sections on system design space exploration; deep learning optimization; system security; multi/many-core scheduling; system energy and heat management; many-core communication; and electronic system-level design and verification. In addition there are 13 papers from three special sessions which were organized on topics of current interest: insights from negative results; machine learning implementations; and European projects.
This open access book presents thirteen outstanding doctoral dissertations in Information Technology from the Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy. Information Technology has always been highly interdisciplinary, as many aspects have to be considered in IT systems. The doctoral studies program in IT at Politecnico di Milano emphasizes this interdisciplinary nature, which is becoming more and more important in recent technological advances, in collaborative projects, and in the education of young researchers. Accordingly, the focus of advanced research is on pursuing a rigorous approach to specific research topics starting from a broad backgr...
Modern electronic systems consist of a fairly heterogeneous set of components. Today, a single system can be constituted by a hardware platform, frequently composed of a mix of analog and digital components, and by several software application layers. The hardware can include several heterogeneous microprocessors (e.g. GPP, DSP, GPU, etc.), dedicated ICs (ASICs and/or FPGAs), memories, a set of local connections between the system components, and some interfaces between the system and the environment (sensors, actuators, etc.). Therefore, on the one hand, multi-processor embedded systems are capable of meeting the demand of processing power and flexibility of complex applications. On the oth...
Design reuse is not just a topic of research but a real industrial necessity in the microelectronic domain and thus driving the competitiveness of relevant areas like for example telecommunication or automotive. Most companies have already dedicated a department or a central unit that transfer design reuse into reality. All main EDA conferences include a track to the topic, and even specific conferences have been established in this area, both in the USA and in Europe. Virtual Components Design and Reuse presents a selection of articles giving a mature and consolidated perspective to design reuse from different points of view. The authors stem from all relevant areas: research and academia, IP providers, EDA vendors and industry. Some classical topics in design reuse, like specification and generation of components, IP retrieval and cataloguing or interface customisation, are revisited and discussed in depth. Moreover, new hot topics are presented, among them IP quality, platform-based reuse, software IP, IP security, business models for design reuse, and major initiatives like the MEDEA EDA Roadmap.
Power consumption is a key limitation in many high-speed and high-data-rate electronic systems today, ranging from mobile telecom to portable and desktop computing systems, especially when moving to nanometer technologies. Ultra Low-Power Electronics and Design offers to the reader the unique opportunity of accessing in an easy and integrated fashion a mix of tutorial material and advanced research results, contributed by leading scientists from academia and industry, covering the most hot and up-to-date issues in the field of the design of ultra low-power devices, systems and applications.
This book constitutes the refereed proceedings of the Third International Workshop on Mobile Agents for Telecommunication Applications, MATA 2001, held in Montreal, Canada in August 2001. The 26 revised full papers presented were carefully reviewed and selected for inclusion in the volume. Among the topics addressed are network management, mobile applications, nomadic computing, feature interaction, Internet applications, QoS managment, policy-based management, interactive multimedia, tele-learning, and computer telephony integration.
This book provides readers with an overview of the architectures, programming frameworks, and hardware accelerators for typical cloud computing applications in data centers. The authors present the most recent and promising solutions, using hardware accelerators to provide high throughput, reduced latency and higher energy efficiency compared to current servers based on commodity processors. Readers will benefit from state-of-the-art information regarding application requirements in contemporary data centers, computational complexity of typical tasks in cloud computing, and a programming framework for the efficient utilization of the hardware accelerators.