You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This third volume of problems from the William Lowell Putnam Competition is unlike the previous two in that it places the problems in the context of important mathematical themes. The authors highlight connections to other problems, to the curriculum and to more advanced topics. The best problems contain kernels of sophisticated ideas related to important current research, and yet the problems are accessible to undergraduates. The solutions have been compiled from the American Mathematical Monthly, Mathematics Magazine and past competitors. Multiple solutions enhance the understanding of the audience, explaining techniques that have relevance to more than the problem at hand. In addition, the book contains suggestions for further reading, a hint to each problem, separate from the full solution and background information about the competition. The book will appeal to students, teachers, professors and indeed anyone interested in problem solving as a gateway to a deep understanding of mathematics.
The Putnam Competition has since 1928 been providing a challenge to gifted college mathematics students. This book, the second of the Putnam Competition volumes, contains problems with their solutions for the years 1965-1984. Additional solutions are presented for many of the problems. Included is an essay on recollections of the first Putnam Exam by Herbert Robbins, as well as appendices listing the winning teams and students from 1965 through 1984. This volume offers the problem solver an enticing sample of challenging problems and their solutions. In 1980, the MAA published the first William Lowell Putnam Mathematical Competition book, covering the contest from 1938 to 1964. In 2002 the third of the Putnam problem books appeared, covering the years 1985 through 2000. All three of these books belong on the bookshelf of students, teachers, and all interested in problem solving.
Back by popular demand, we are pleased to reissue this outstanding collection of problems and solutions from the Putnam Competitions covering the years 1938-1964. Problemists the world over, including all past and future Putnam Competitors, will revel in mastering the difficulties posed by this collection of problems from the first 25 William Lowell Putnam Competitions. Solutions to all 347 problems are given. In some cases multiple solutions are included, some which contestants could reasonably be expected to find under examination conditions, and others which are more elegant or utilize more sophisticated techniques. Valuable references and historical comments on many of the problems are presented. The book concludes with four articles on the Putnam competition written by G. Birkhoff, L. E. Bush, L. J. Mordell, and L. M. Kelly which are reprinted from the American Mathematical Monthly. There is great appeal here for all; teachers, students, and all those who love good problems and see them as an entree to beautiful and powerful ideas.
The William Lowell Putnam Mathematics Competition is the most prestigious undergraduate mathematics problem-solving contest in North America, with thousands of students taking part every year. This volume presents the contest problems for the years 2001-2016. The heart of the book is the solutions; these include multiple approaches, drawn from many sources, plus insights into navigating from the problem statement to a solution. There is also a section of hints, to encourage readers to engage deeply with the problems before consulting the solutions.The authors have a distinguished history of en.
This book takes the reader on a journey through the world of college mathematics, focusing on some of the most important concepts and results in the theories of polynomials, linear algebra, real analysis, differential equations, coordinate geometry, trigonometry, elementary number theory, combinatorics, and probability. Preliminary material provides an overview of common methods of proof: argument by contradiction, mathematical induction, pigeonhole principle, ordered sets, and invariants. Each chapter systematically presents a single subject within which problems are clustered in each section according to the specific topic. The exposition is driven by nearly 1300 problems and examples chos...
Atop a mesa one mile west of downtown Flagstaff, Arizona, sits Lowell Observatory, an astronomical research facility steeped in tradition. Percival Lowell, scion of a Boston Brahmin family, initially established his observatory in 1894 to study the possibility of intelligent life on Mars. Lowell widely popularized his controversial theories, sparking debate among both the scientific community and lay public. In the following years, the observatory's astronomers made several discoveries that dramatically altered our understanding of space, including Clyde Tombaugh's discovery of Pluto in 1930 and V.M. Slipher's detection of the expanding nature of the universe in 1912. Decades later, Apollo astronauts visited as part of their training to fly to the moon. These stories and others offer a glimpse of the scientific discovery, community pride, and personal triumph that define Lowell Observatory.
Proofs without words (PWWs) are figures or diagrams that help the reader see why a particular mathematical statement is true, and how one might begin to formally prove it true. PWWs are not new, many date back to classical Greece, ancient China, and medieval Europe and the Middle East. PWWs have been regular features of the MAA journals Mathematics Magazine and The College Mathematics Journal for many years, and the MAA published the collections of PWWs Proofs Without Words: Exercises in Visual Thinking in 1993 and Proofs Without Words II: More Exercises in Visual Thinking in 2000. This book is the third such collection of PWWs.
The first professional mountain guides to be employed in North America were all Italians: Guiseppe Petigax and Lorenzo Croux of Courmeyer, Antonio Maguinaz and Andrea Pellissier of Valtournanche and Erminio Botta of Beilla, all in the retinue of Luigi Amadeo of Savoia, Duke of the Abruzzi whose successful expedition to Mount Saint Elias in 1896 became an Alaskan and mountaineering legend. The next summer, Professor H.B. Dixon followed his example and engaged Peter Sarbach to accompany him on several weeks of climbing in the "Canadian Alps". It was the obvious success of this particular act which prompted the Vaux brothers, distinguished amateur scientists of Philadelphia, to suggest again in...
Volume 3 of Research in Collegiate Mathematics Education (RCME) presents state-of-the-art research on understanding, teaching and learning mathematics at the post-secondary level. This volume contains information on methodology and research concentrating on these areas of student learning: Problem Solving; Understanding Concepts; and Understanding Proofs.