You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This classic of advanced statistics is geared toward graduate-level readers and uses the concepts of gambling to develop important ideas in probability theory. The authors have distilled the essence of many years' research into a dozen concise chapters. "Strongly recommended" by the Journal of the American Statistical Association upon its initial publication, this revised and updated edition features contributions from two well-known statisticians that include a new Preface, updated references, and findings from recent research. Following an introductory chapter, the book formulates the gambler's problem and discusses gambling strategies. Succeeding chapters explore the properties associated with casinos and certain measures of subfairness. Concluding chapters relate the scope of the gambler's problems to more general mathematical ideas, including dynamic programming, Bayesian statistics, and stochastic processes. Dover (2014) revised and updated republication of the 1976 Dover edition entitled Inequalities for Stochastic Processes. See every Dover book in print at www.doverpublications.com
A rigorous theory of money, credit, and bankruptcy in the context of a mixed economy, uniting Walrasian general equilibrium with macroeconomic dynamics and Schumpeterian innovation. This book offers a rigorous study of control, guidance, and coordination problems of an enterprise economy, with attention to the roles of money and financial institutions. The approach is distinctive in drawing on game theory, methods of physics and experimental gaming, and, more generally, a broader evolutionary perspective from the biological and behavioral sciences. The proposed theory unites Walrasian general equilibrium with macroeconomic dynamics and Schumpeterian innovation utilizing strategic market game...
Also includes "corrections and additions", 3 leaves at back of book.
Statistical science as organized in formal academic departments is relatively new. With a few exceptions, most Statistics and Biostatistics departments have been created within the past 60 years. This book consists of a set of memoirs, one for each department in the U.S. created by the mid-1960s. The memoirs describe key aspects of the department’s history -- its founding, its growth, key people in its development, success stories (such as major research accomplishments) and the occasional failure story, PhD graduates who have had a significant impact, its impact on statistical education, and a summary of where the department stands today and its vision for the future. Read here all about how departments such as at Berkeley, Chicago, Harvard, and Stanford started and how they got to where they are today. The book should also be of interests to scholars in the field of disciplinary history.
In recent decades, Reinforcement Learning (RL) has emerged as an effective approach to address complex control tasks. In a Markov Decision Process (MDP), the framework typically used, the environment is assumed to be a fixed entity that cannot be altered externally. There are, however, several real-world scenarios in which the environment can be modified to a limited extent. This book, Exploiting Environment Configurability in Reinforcement Learning, aims to formalize and study diverse aspects of environment configuration. In a traditional MDP, the agent perceives the state of the environment and performs actions. As a consequence, the environment transitions to a new state and generates a r...
The standard rules of probability can be interpreted as uniquely valid principles in logic. In this book, E. T. Jaynes dispels the imaginary distinction between 'probability theory' and 'statistical inference', leaving a logical unity and simplicity, which provides greater technical power and flexibility in applications. This book goes beyond the conventional mathematics of probability theory, viewing the subject in a wider context. New results are discussed, along with applications of probability theory to a wide variety of problems in physics, mathematics, economics, chemistry and biology. It contains many exercises and problems, and is suitable for use as a textbook on graduate level courses involving data analysis. The material is aimed at readers who are already familiar with applied mathematics at an advanced undergraduate level or higher. The book will be of interest to scientists working in any area where inference from incomplete information is necessary.
Using simple but rigorously defined mathematical models, Thomas Quint and Martin Shubik explore monetary control in a simple exchange economy. Examining how money enters, circulates, and exits an economy, they consider the nature of trading systems and the role of government authority in the exchange of consumer goods for storable money; exchanges made with durable currency, such as gold; fiat currency, which is flexible but has no consumption value; conditions under which borrowers can declare bankruptcy; and the distinctions between individuals who lend their own money, and financiers, who lend others’.div/DIV
This book constitutes the refereed proceedings of the 18th International Workshop on Computer Science Logic, CSL 2004, held as the 13th Annual Conference of the EACSL in Karpacz, Poland, in September 2004. The 33 revised full papers presented together with 5 invited contributions were carefully reviewed and selected from 88 papers submitted. All current aspects of logic in computer science are addressed ranging from mathematical logic and logical foundations to methodological issues and applications of logics in various computing contexts.
Students and teachers of mathematics and related fields will find this book a comprehensive and modern approach to probability theory, providing the background and techniques to go from the beginning graduate level to the point of specialization in research areas of current interest. The book is designed for a two- or three-semester course, assuming only courses in undergraduate real analysis or rigorous advanced calculus, and some elementary linear algebra. A variety of applications—Bayesian statistics, financial mathematics, information theory, tomography, and signal processing—appear as threads to both enhance the understanding of the relevant mathematics and motivate students whose main interests are outside of pure areas.
Probability theory has grown from a modest study of simple games of change to a subject with application in almost every branch of knowledge and science. In this exciting book, a number of distinguished probabilists discuss their current work and applications in an easily understood manner. Chapters show that new directions in probability have been suggested by the application of probability to other fields and other disciplines of mathematics. The study of polymer chains in chemistry led to the study of self-avoiding random walks; the study of the Ising model in physics and models for epidemics in biology led to the study of the probability theory of interacting particle systems. The stochastic calculus has allowed probabilists to solve problems in classical analysis, in theory of investment, and in engineering. The mathematical formulation of game theory has led to new insights into decisions under uncertainty. These new developments in probability are vividly illustrated throughout the book.