You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
None
The quantum-mechanical ground-state problem for three identical particles bound by attractive inter-particle potentials is discussed. For this problem it has previously been shown that it is advantageous to write the wave function in a special functional form, form which an integral equation which is equivalent to the Schrodinger equation was derived. In this paper a new method for solving this equation is presented. The method involves an expansion of a two-body problem with a potential of the same shape as the inter-particle potential in the three-body problem, but of enhanced strength.
The absorption of ozone in the 9.0 micron region of the infrared spectrum, due to transitions from the ground state to the v1 and v3 states, has been studied. This report gives the numerical results of an anlysis of the spectrum including transition frequencies and perturbed intensities ordered by quantum number and by frequency. Calculated and observed special contours are included.
The resonant frequencies for the fundamental modes in circular cylindrical and rectangular parallelopiped high dielectric resonators have been calculated by computer for a range of values of physical dimensions and relative dielectric constant. The frequency range extends from zero to 50,000 Mc/sec, the relative dielectric constant from 50 to 1800, and physical dimensions from zero to 500 mils. Results are presented in tabular and graphical form with frequency plotted versus resonator length for parametric values of relative dielectric constant and cross sectional dimensions. A brief review of earlier work with high dielectric resonators is included. Expressions for the resonant frequency and fundamental mode field configurations are given. (Author).