You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume of Analog Circuit Design concentrates on three topics: Volt Electronics; Design and Implementation of Mixed-Mode Systems; Low-Noise and RF Power Amplifiers for Telecommunication. The book comprises six papers on each topic written by internationally recognised experts. These papers are tutorial in nature and together make a substantial contribution to improving the design of analog circuits. The book is divided into three parts: Part I, Volt Electronics, presents some of the circuit design challenges which are having to be met as the need for more electronics on a chip forces smaller transistor dimensions, and thus lower breakdown voltages. The papers cover techniques for 1-Volt ...
Analog Circuit Design contains the contribution of 18 tutorials of the 18th workshop on Advances in Analog Circuit Design. Each part discusses a specific to-date topic on new and valuable design ideas in the area of analog circuit design. Each part is presented by six experts in that field and state of the art information is shared and overviewed. This book is number 18 in this successful series of Analog Circuit Design, providing valuable information and excellent overviews of: Smart Data Converters: Chaired by Prof. Arthur van Roermund, Eindhoven University of Technology, Filters on Chip: Chaired by Herman Casier, AMI Semiconductor Fellow, Multimode Transmitters: Chaired by Prof. M. Steyaert, Catholic University Leuven, Analog Circuit Design is an essential reference source for analog circuit designers and researchers wishing to keep abreast with the latest development in the field. The tutorial coverage also makes it suitable for use in an advanced design.
As the frequency of communication systems increases and the dimensions of transistors are reduced, more and more stringent performance requirements are placed on analog circuits. This is a trend that is bound to continue for the foreseeable future and while it does, understanding performance trade-offs will constitute a vital part of the analog design process. It is the insight and intuition obtained from a fundamental understanding of performance conflicts and trade-offs, that ultimately provides the designer with the basic tools necessary for effective and creative analog design. Trade-offs in Analog Circuit Design, which is devoted to the understanding of trade-offs in analog design, is q...
Analog Circuit Design contains the contribution of 18 tutorials of the 14th workshop on Advances in Analog Circuit Design. Each part discusses a specific todate topic on new and valuable design ideas in the area of analog circuit design. Each part is presented by six experts in that field and state of the art information is shared and overviewed. This book is number 14 in this successful series of Analog Circuit Design, providing valuable information and excellent overviews of analog circuit design, CAD and RF systems. Analog Circuit Design is an essential reference source for analog circuit designers and researchers wishing to keep abreast with the latest development in the field. The tutorial coverage also makes it suitable for use in an advanced design course.
The area of analog integrated circuits is facing some serious challenges due to the ongoing trends towards low supply voltages, low power consumption and high-frequency operation. The situation is becoming even more complicated by the fact that many transfer functions have to be tunable or controllable. A promising approach to facing these challenges is given by the class of dynamic translinear circuits, which are, as a consequence, receiving increasing interest. Several different names are used in literature: log-domain, exponential state-space, current-mode companding, instantaneous companding, tanh-domain, sinh-domain, polynomial state-space, square-root domain and translinear filters. In fact, all these groups are (overlapping) subclasses of the overall class of dynamic translinear circuits. Research Perspectives on Dynamic Translinear and Log-Domain Circuits is a compilation of research findings in this growing field. It comprises ten contributions, coming from recognized `dynamic-translinear' researchers in Europe and North America. Research Perspectives on Dynamic Translinear and Log-Domain Circuits is an edited volume of original research.
CMOS Current Amplifiers presents design strategies for high performance current amplifiers based on CMOS technology. After an introduction to various architectures of operational amplifiers, the operating principles of the current amplifier are outlined. This book provides the reader with simple and compact design equations for use in a pencil and paper design and the following simulation step. Chapter 1 introduces the general aspects of current amplifiers. After a preliminary classification of operational amplifiers, ideal blocks and models are discussed for different architectures and a first high-level comparison is made between traditional amplifiers and current amplifiers. Analysis and ...
Low-Voltage Low-Power Analog Integrated Circuits brings together in one place important contributions and state-of-the-art research results in this rapidly advancing area. Low-Voltage Low-Power Analog Integrated Circuits serves as an excellent reference, providing insight into some of the most important issues in the field.
Log-domain and translinear filters provide a competitive alternative to the challenges of ever increasing low-voltage, low-power and high frequency demands in the area of continuous-time filters. Since translinear filters are fundamentally large-signal linear, they are capable of realizing a large dynamic range in combination with excellent tunability characteristics. Large-signal linearity is achieved by exploiting the accurate exponential behavior of the bipolar transistor or the subthreshold MOS transistor. A generalization of the dynamic translinear principle exploiting the square law behavior of the MOS transistor is theoretically possible, but not practically relevant. Translinear and ...
Learning on Silicon combines models of adaptive information processing in the brain with advances in microelectronics technology and circuit design. The premise is to construct integrated systems not only loaded with sufficient computational power to handle demanding signal processing tasks in sensory perception and pattern recognition, but also capable of operating autonomously and robustly in unpredictable environments through mechanisms of adaptation and learning. This edited volume covers the spectrum of Learning on Silicon in five parts: adaptive sensory systems, neuromorphic learning, learning architectures, learning dynamics, and learning systems. The 18 chapters are documented with examples of fabricated systems, experimental results from silicon, and integrated applications ranging from adaptive optics to biomedical instrumentation. As the first comprehensive treatment on the subject, Learning on Silicon serves as a reference for beginners and experienced researchers alike. It provides excellent material for an advanced course, and a source of inspiration for continued research towards building intelligent adaptive machines.