You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The theory of spatial models over lattices, or random fields as they are known, has developed significantly over recent years. This book provides a graduate-level introduction to the subject which assumes only a basic knowledge of probability and statistics, finite Markov chains, and the spectral theory of second-order processes. A particular strength of this book is its emphasis on examples - both to motivate the theory which is being developed, and to demonstrate the applications which range from statistical mechanics to image analysis and from statistics to stochastic algorithms.
Spatial statistics are useful in subjects as diverse as climatology, ecology, economics, environmental and earth sciences, epidemiology, image analysis and more. This book covers the best-known spatial models for three types of spatial data: geostatistical data (stationarity, intrinsic models, variograms, spatial regression and space-time models), areal data (Gibbs-Markov fields and spatial auto-regression) and point pattern data (Poisson, Cox, Gibbs and Markov point processes). The level is relatively advanced, and the presentation concise but complete. The most important statistical methods and their asymptotic properties are described, including estimation in geostatistics, autocorrelatio...
This book is devoted to optimal syntheses in control theory and focuses on minimum time on 2-D manifolds. The text outlines examples of applicability, introduces geometric methods in control theory, and analyzes single input systems on 2-D manifolds including classifications of optimal syntheses and feedbacks, their singularities, extremals projection and minimum time singularities. Various extensions and applications are also illustrated.
This volume comprises a collection of papers by world- renowned experts on image analysis. The papers range from survey articles to research papers, and from theoretical topics such as simulated annealing through to applied image reconstruction. It covers applications as diverse as biomedicine, astronomy, and geophysics. As a result, any researcher working on image analysis will find this book provides an up-to-date overview of the field and in addition, the extensive bibliographies will make this a useful reference.
Content Description #Includes bibliographical references and index.
SPATIAL ANALYSIS Explore the foundations and latest developments in spatial statistical analysis In Spatial Analysis, two distinguished authors deliver a practical and insightful exploration of the statistical investigation of the interdependence of random variables as a function of their spatial proximity. The book expertly blends theory and application, offering numerous worked examples and exercises at the end of each chapter. Increasingly relevant to fields as diverse as epidemiology, geography, geology, image analysis, and machine learning, spatial statistics is becoming more important to a wide range of specialists and professionals. The book includes: Thorough introduction to stationary random fields, intrinsic and generalized random fields, and stochastic models Comprehensive exploration of the estimation of spatial structure Practical discussion of kriging and the spatial linear model Spatial Analysis is an invaluable resource for advanced undergraduate and postgraduate students in statistics, data science, digital imaging, geostatistics, and agriculture. It’s also an accessible reference for professionals who are required to use spatial models in their work.
None
This book provides an inter-disciplinary introduction to the theory of random fields and its applications. Spatial models and spatial data analysis are integral parts of many scientific and engineering disciplines. Random fields provide a general theoretical framework for the development of spatial models and their applications in data analysis. The contents of the book include topics from classical statistics and random field theory (regression models, Gaussian random fields, stationarity, correlation functions) spatial statistics (variogram estimation, model inference, kriging-based prediction) and statistical physics (fractals, Ising model, simulated annealing, maximum entropy, functional...
This volume contains presentations by eminent researchers: Statistical Inference for Spatial Processes; Image Analysis; Applications of Spatial Statistics in Earth, Environmental, and Health Sciences; and Statistics of Brain Mapping. They range from asymptotic considerations for spatial processes to practical considerations related to particular applications including important methodological aspects. Many contributions concern image analysis, mainly images related to brain mapping.
Shells and plates have been widely studied by engineers during the last fifty years. As a matter of fact an important number of papers have been based on analytical calculations. More recently numerical simulations have been extensively used. for instance for large displacement analysis. for shape optimization or even -in linear analysis -for composite material understanding. But all these works lie on a choice of a finite element scheme which contains usually three kinds of approximations: 1. a plate or shell mndel including smnll parameters associated to the thickness, 2. an approximntion of the geometry (the medium sUrface of a shell and its boundary), 3. afinite element scheme in order t...