You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This invaluable book provides a broad and detailed introduction to the fascinating and hot research subject of transformation of biomass-related materials to biofuels. Biofuel production can be categorized into a variety of novel conversion and refinery development technologies. However, biomass recalcitrance is the biggest challenge blocking the way in biofuel conversion. This book provides an enlightening view of the frontiers in leading pretreatments, downstream enzymatic hydrolysis, fermentation technology, corrosion issues in biofuel and merging biofuels technology into a pulp mill to pave the way for future large-scale biofuel production.
This book covers sustainable recycling processes (e.g. physical, biological, chemical, and thermo-chemical) of multiple organic solid wastes, provides methods for material recycle of wastes into value-added products including fuels and commodity chemicals that are able to be directly applied to promote manufacturing processes. Aimed at improving the awareness of effective conversion protocols and for developing innovative biomass conversion processes, this text was conceived as a collection of studies on state-of-art techniques and know-how for production of biofuels and chemicals from sustainable recycling of organic solid wastes. Topics in the text are discussed in terms of addressing recent advances, assessing and highlighting promising new methods or new technological strategies and direct conversion of organic solid wastes to process feeds. Highly-recognized authorities, experts and professionals have contributed individual chapters in selected areas to cover the overall topic in a comprehensive manner.
Special topic volume with invited peer-reviewed papers only
This book aims to inform readers about the recent developments in production, evaluation, and utilization of bioethanol fuels from non-waste feedstocks. It covers the production of bioethanol fuels from first generation starch feedstocks and sugar feedstocks, grass biomass, wood biomass, cellulose, biosyngas, and third generation algae. In this context, there are nine key sections where the first four chapters cover the production of bioethanol fuels from feedstocks at large and non-waste feedstocks. This book shows that pretreatments and hydrolysis of the non-waste feedstocks, fermentation of hydrolysates, and separation and distillation of bioethanol fuels are the fundamental processes for...
Lignocellulosic biomass has great potentials as an alternative feedstock for fuels and chemicals. For effective utilization of biomass, biomass recalcitrance, which is inherent resistance of plant cell walls to biological deconstruction, needs to be reduced. Among many factors in biomass, lignin is significantly related to biomass recalcitrance. Lignin, a complex aromatic polymer, is the largest non-carbohydrate component (15-40% dry weight) in most terrestrial plants. In nature, it provides a structural integrity, facilitates water and nutrient transport, and protects plants from microbial attack. From a different angle, lignin significantly contributes to biomass recalcitrance, so it is ne...
This book provides an overview of the research on production processes for bioethanol fuels in general, hydrolysis of the pretreated biomass for bioethanol production, microbial fermentation of hydrolysates and substrates with yeasts for bioethanol production, and separation and distillation of bioethanol fuels from the fermentation broth, complementing the research on biomass pretreatments presented in the first volume. It presents an overview of the research on biomass hydrolysis in general, wood hydrolysis, straw hydrolysis, and cellulose hydrolysis for bioethanol fuel production in the first section for biomass hydrolysis. It provides an overview of the research on microbial hydrolysate ...
Sustainable biomaterials are used as substitutions for traditional materials in aerospace, automotive, civil, mechanical, environmental engineering, medical, and other industries. This book presents the current knowledge and recent developments on the characterization and application of sustainable biomaterials with biomanufacturing 4.0 techniques. The book also describes the unique properties of various classes of sustainable biomaterials, making them highly suitable for many industrial applications. Advances in Sustainable Biomaterials: Bioprocessing 4.0, Characterizations, and Applications presents key chapters on smart biopolymer composites production and processing methods and provides ...
This book compiles research aspects of second-generation (2G) biofuel production derived specifically from lignocellulose biomass using biorefinery methods. It focuses on the valorization of different sources of 2G biofuels and their relative importance. The constituents of lignocelluloses and their potential characteristics different methods of treating lignocellulose, various means of lignocellulose bioconversion, and biofuel production strategies are discussed. Features: Describes technological advancements for bioethanol production from lignocellulosic waste. Provides the roadmap for the production and utilization of 2G biofuels. Introduces the strategic role of metabolic engineering in the development of 2G biofuels. Discusses technological advancements, life cycle assessment, and prospects. Explores the novel potential lignocellulosic biomass for 2G biofuels. This book is aimed at researchers and professionals in renewable energy, biofuel, bioethanol, lignocellulose conversion, fermentation, and chemical engineering.
This book provides in-depth coverage on the latest concepts, systems, and technologies that are being utilized in biorefineries for the production of biofuels and value-added commodities. Written by internationally recognized experts, the book provides a comprehensive overview of pretreatment technology for biorefineries and biofuels, enzymatic hydrolysis and fermentation technology for biofuel production, and lignin valorization for developing new products from waste lignin. The book will be a valuable resource for researchers and professionals working in process engineering, product engineering, material science, and systems and synthetic biology in the fields of biorefining, biofuel, biomaterials, environmental waste utilization, and biotechnology.