You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
While there have been a large number of estimation methods proposed and developed for linear regression, none has proved good for all purposes. This text focuses on the construction of an adaptive combination of two estimation methods so as to help users make an objective choice and combine the desirable properties of two estimators.
This is the new-in-paperback edition of The Oxford Dictionary of Statistical Terms, the much-awaited sixth edition of the acclaimed standard reference work in statistics, published on behalf of the International Statistical Institute. The first edition, known as the Dictionary of Statistical Terms, was edited in 1957 by the late Sir Maurice Kendall and the late Dr W.R. Buckland. As one of the first dictionaries of statistics it set high standards for the subject, and became a well-respected reference. This edition has been carefully updated and extended to include the most recent terminology and techniques in statistics. Significant revision and expansion from an international editorial board of senior statisticians has resulted in a comprehenisive reference text which includes 30% more material than previous editions. Ideal for all who use statistics in the workplace and in research including all scientists and social scientists, especially in law, politics, finance, business, and history, it is an indispensable reference.
The Concise Encyclopedia of Statistics presents the essential information about statistical tests, concepts, and analytical methods in language that is accessible to practitioners and students of the vast community using statistics in medicine, engineering, physical science, life science, social science, and business/economics. The reference is alphabetically arranged to provide quick access to the fundamental tools of statistical methodology and biographies of famous statisticians. The more than 500 entries include definitions, history, mathematical details, limitations, examples, references, and further readings. All entries include cross-references as well as the key citations. The back matter includes a timeline of statistical inventions. This reference will be an enduring resource for locating convenient overviews about this essential field of study.
Of related interest. Nonlinear Regression Analysis and its Applications Douglas M. Bates and Donald G. Watts ".an extraordinary presentation of concepts and methods concerning the use and analysis of nonlinear regression models.highly recommend[ed].for anyone needing to use and/or understand issues concerning the analysis of nonlinear regression models." --Technometrics This book provides a balance between theory and practice supported by extensive displays of instructive geometrical constructs. Numerous in-depth case studies illustrate the use of nonlinear regression analysis--with all data sets real. Topics include: multi-response parameter estimation; models defined by systems of differen...
Linear regression analysis; Generalized inverses in linear statistical models; Theory of testing statistical hypotheses; Sampling; Design and analysis of experiment; Cluster analysis.
This volume contains a selection of invited papers, presented to the fourth International Conference on Statistical Data Analysis Based on the L1-Norm and Related Methods, held in Neuchâtel, Switzerland, from August 4–9, 2002. The contributions represent clear evidence to the importance of the development of theory, methods and applications related to the statistical data analysis based on the L1-norm.
Sir David Cox is among the most important statisticians of the past half-century. He has made pioneering and highly influential contributions to a uniquely wide range of topics in statistics and applied probability. His teaching has inspired generations of students, and many well-known researchers have begun as his graduate students or have worked with him at early stages of their careers. Legions of others have been stimulated and enlightened by the clear, concise, and direct exposition exemplified by his many books, papers, and lectures. This book presents a collection of chapters by major statistical researchers who attended a conference held at the University of Neuchatel in July 2004 to...
A wide range of topics and perspectives in the field of statistics are brought together in this volume. The contributions originate from invited papers presented at an international conference which was held in honour of C. Radhakrishna Rao, one of the most eminent statisticians of our time and a distinguished scientist.
The very significant advances in computer vision and pattern recognition and their applications in the last few years reflect the strong and growing interest in the field as well as the many opportunities and challenges it offers. The second edition of this handbook represents both the latest progress and updated knowledge in this dynamic field. The applications and technological issues are particularly emphasized in this edition to reflect the wide applicability of the field in many practical problems. To keep the book in a single volume, it is not possible to retain all chapters of the first edition. However, the chapters of both editions are well written for permanent reference. This indispensable handbook will continue to serve as an authoritative and comprehensive guide in the field.
Monte Carlo simulation has become one of the most important tools in all fields of science. This book surveys the basic techniques and principles of the subject, as well as general techniques useful in more complicated models and in novel settings. The emphasis throughout is on practical methods that work well in current computing environments.