You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book contains the proceedings of the conference Geometry & Topology Down Under, held July 11-22, 2011, at the University of Melbourne, Parkville, Australia, in honour of Hyam Rubinstein. The main topic of the book is low-dimensional geometry and topology. It includes both survey articles based on courses presented at the conferences and research articles devoted to important questions in low-dimensional geometry. Together, these contributions show how methods from different fields of mathematics contribute to the study of 3-manifolds and Gromov hyperbolic groups. It also contains a list of favorite problems by Hyam Rubinstein.
Science and engineering have been great sources of problems and inspiration for generations of mathematicians. This is probably true now more than ever as numerous challenges in science and technology are met by mathematicians. One of these challenges is understanding propagation of waves of different nature in systems of complex structure. This book contains the proceedings of the research conference, ``Waves in Periodic and Random Media''. Papers are devoted to a number of related themes, including spectral theory of periodic differential operators, Anderson localization and spectral theory of random operators, photonic crystals, waveguide theory, mesoscopic systems, and designer random surfaces. Contributions are written by prominent experts and are of interest to researchers and graduate students in mathematical physics.
This volume presents articles from several lectures presented at the school on ``Quantum Symmetries in Theoretical Physics and Mathematics'' held in Bariloche, Argentina. The various lecturers provided significantly different points of view on several aspects of Hopf algebras, quantum group theory, and noncommutative differential geometry, ranging from analysis, geometry, and algebra to physical models, especially in connection with integrable systems and conformal field theories.Primary topics discussed in the text include subgroups of quantum $SU(N)$, quantum ADE classifications and generalized Coxeter systems, modular invariance, defects and boundaries in conformal field theory, finite dimensional Hopf algebras, Lie bialgebras and Belavin-Drinfeld triples, real forms ofquantum spaces, perturbative and non-perturbative Yang-Baxter operators, braided subfactors in operator algebras and conformal field theory, and generalized ($d$) cohomologies.
Gathers the 14 papers presented during a March 2000 symposium on algebraic geometry. The contributors survey the links between geometry and the theory of Korteweg de Vries (KdV) equations, as well as new developments in orbifold string theory. Other papers investigate orthogonal complex hyperbolic arrangements, vector bundles on the cubic threefold, using symmetry to count rational curves, the Nash conjecture for non-projective threefolds, and the punctual Hilbert scheme of a symplectic fourfold. No index. Annotation copyrighted by Book News, Inc., Portland, OR
Our knowledge of objects of algebraic geometry such as moduli of curves, (real) Schubert classes, fundamental groups of complements of hyperplane arrangements, toric varieties, and variation of Hodge structures, has been enhanced recently by ideas and constructions of quantum field theory, such as mirror symmetry, Gromov-Witten invariants, quantum cohomology, and gravitational descendants. These are some of the themes of this refereed collection of papers, which grew out of the special session, ``Enumerative Geometry in Physics,'' held at the AMS meeting in Lowell, MA, April 2000. This session brought together mathematicians and physicists who reported on the latest results and open questions; all the abstracts are included as an Appendix, and also included are papers by some who could not attend. The collection provides an overview of state-of-the-art tools, links that connect classical and modern problems, and the latest knowledge available.
William Thurston's work has had a profound influence on mathematics. He connected whole mathematical subjects in entirely new ways and changed the way mathematicians think about geometry, topology, foliations, group theory, dynamical systems, and the way these areas interact. His emphasis on understanding and imagination in mathematical learning and thinking are integral elements of his distinctive legacy. This four-part collection brings together in one place Thurston's major writings, many of which are appearing in publication for the first time. Volumes I–III contain commentaries by the Editors. Volume IV includes a preface by Steven P. Kerckhoff. Volume II contains William Thurston's papers on the geometry and topology of 3-manifolds, on complexity, constructions and computers, and on geometric group theory.
This volume presents 19 refereed articles written by participants in the Singapore International Symposium in Topology and Geometry (SISTAG), held July 2-6, 2001, at the National University of Singapore. Rather than being a simple snapshot of the meeting in the form of a proceedings, it serves as a commemorative volume consisting of papers selected to show the diversity and depth of the mathematics presented at SISTAG. The book contains articles on low-dimensional topology, algebraic, differential and symplectic geometry, and algebraic topology. While papers reflect the focus of the conference, many documents written after SISTAG and included in this volume represent the most up-to-date thinking in the fields of topology and geometry. While representation from Pacific Rim countries is strong, the list of contributors is international in scope and includes many recognized experts. This volume is of interest to graduate students and mathematicians working in the fields of algebraic, differential and symplectic geometry, algebraic, geometric and low-dimensional topology, and mathematical physics.
Mapping class groups and moduli spaces of Riemann surfaces were the topics of the Graduate Summer School at the 2011 IAS/Park City Mathematics Institute. This book presents the nine different lecture series comprising the summer school, covering a selection of topics of current interest. The introductory courses treat mapping class groups and Teichmüller theory. The more advanced courses cover intersection theory on moduli spaces, the dynamics of polygonal billiards and moduli spaces, the stable cohomology of mapping class groups, the structure of Torelli groups, and arithmetic mapping class groups. The courses consist of a set of intensive short lectures offered by leaders in the field, de...
The subject of Kleinian groups and hyperbolic 3-manifolds is currently undergoing explosively fast development. This volume contains important expositions on topics such as topology and geometry of 3-manifolds, curve complexes, classical Ahlfors-Bers theory and computer explorations. Researchers in these and related areas will find much of interest here.
The subject of Kleinian groups and hyperbolic 3-manifolds is currently undergoing explosively fast development, with many old problems and conjectures close to resolution. This volume, proceedings of the Warwick workshop in September 2001, contains expositions of many of these breakthroughs including Minsky's lectures on the first half of the proof of the Ending Lamination Conjecture, the Bers Density Conjecture by Brock and Bromberg, the Tameness Conjecture by Kleineidam and Souto, the state of the art in cone manifolds by Hodgson and Kerckhoff, and the counter example to Thurston's K=2 conjecture by Epstein, Marden and Markovic. It also contains Jørgensen's famous paper 'On pairs of once punctured tori' in print for the first time. The excellent collection of papers here will appeal to graduate students, who will find much here to inspire them, and established researchers who will find this valuable as a snapshot of current research.