You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Quantum information has dramatically changed information science and technology, looking at the quantum nature of the information carrier as a resource for building new information protocols, designing radically new communication and computation algorithms, and ultra-sensitive measurements in metrology, with a wealth of applications. From a fundamental perspective, this new discipline has led us to regard quantum theory itself as a special theory of information, and has opened routes for exploring solutions to the tension with general relativity, based, for example, on the holographic principle, on non-causal variations of the theory, or else on the powerful algorithm of the quantum cellular...
Blind Source Separation intends to report the new results of the efforts on the study of Blind Source Separation (BSS). The book collects novel research ideas and some training in BSS, independent component analysis (ICA), artificial intelligence and signal processing applications. Furthermore, the research results previously scattered in many journals and conferences worldwide are methodically edited and presented in a unified form. The book is likely to be of interest to university researchers, R&D engineers and graduate students in computer science and electronics who wish to learn the core principles, methods, algorithms and applications of BSS. Dr. Ganesh R. Naik works at University of Technology, Sydney, Australia; Dr. Wenwu Wang works at University of Surrey, UK.
This book constitutes the refereed proceedings of the 7th International Conference on Independent Component Analysis and Blind Source Separation, ICA 2007, held in London, UK, in September 2007. It covers algorithms and architectures, applications, medical applications, speech and signal processing, theory, and visual and sensory processing.
This book constitutes the refereed proceedings of the 5th International Conference on Image and Signal Processing, ICISP 2012, held in Agadir, Morocco, in June 2012. The 75 revised full papers presented were carefully reviewed and selected from 158 submissions. The contributions are grouped into the following topical sections: multi/hyperspectral imaging; image itering and coding; signal processing; biometric; watermarking and texture; segmentation and retieval; image processing; pattern recognition.
PIXELS & PAINTINGS “The discussion is firmly grounded in established art historical practices, such as close visual analysis and an understanding of artists’ working methods, and real-world examples demonstrate how computer-assisted techniques can complement traditional approaches.” —Dr. Emilie Gordenker, Director of the Van Gogh Museum The pioneering presentation of computer-based image analysis of fine art, forging a dialog between art scholars and the computer vision community In recent years, sophisticated computer vision, graphics, and artificial intelligence algorithms have proven to be increasingly powerful tools in the study of fine art. These methods—some adapted from fore...
The two-volume set LNCS 2686 and LNCS 2687 constitute the refereed proceedings of the 7th International Work-Conference on Artificial and Natural Neural Networks, IWANN 2003, held in Maó, Menorca, Spain in June 2003. The 197 revised papers presented were carefully reviewed and selected for inclusion in the book and address the following topics: mathematical and computational methods in neural modelling, neurophysiological data analysis and modelling, structural and functional models of neurons, learning and other plasticity phenomena, complex systems dynamics, cognitive processes and artificial intelligence, methodologies for net design, bio-inspired systems and engineering, and applications in a broad variety of fields.
This book presents the research into and application of machine learning in quantum computation, known as quantum machine learning (QML). It presents a comparison of quantum machine learning, classical machine learning, and traditional programming, along with the usage of quantum computing, toward improving traditional machine learning algorithms through case studies. In summary, the book: Covers the core and fundamental aspects of statistics, quantum learning, and quantum machines. Discusses the basics of machine learning, regression, supervised and unsupervised machine learning algorithms, and artificial neural networks. Elaborates upon quantum machine learning models, quantum machine learning approaches and quantum classification, and boosting. Introduces quantum evaluation models, deep quantum learning, ensembles, and QBoost. Presents case studies to demonstrate the efficiency of quantum mechanics in industrial aspects. This reference text is primarily written for scholars and researchers working in the fields of computer science and engineering, information technology, electrical engineering, and electronics and communication engineering.
Thisvolumecollectsthepaperspresentedatthe9thInternationalConferenceon Latent Variable Analysis and Signal Separation,LVA/ICA 2010. The conference was organized by INRIA, the French National Institute for Computer Science and Control,and was held in Saint-Malo, France, September 27–30,2010,at the Palais du Grand Large. Tenyearsafterthe?rstworkshoponIndependent Component Analysis(ICA) in Aussois, France, the series of ICA conferences has shown the liveliness of the community of theoreticians and practitioners working in this ?eld. While ICA and blind signal separation have become mainstream topics, new approaches have emerged to solve problems involving signal mixtures or various other types...
This book reports on the latest advances in concepts and further developments of principal component analysis (PCA), addressing a number of open problems related to dimensional reduction techniques and their extensions in detail. Bringing together research results previously scattered throughout many scientific journals papers worldwide, the book presents them in a methodologically unified form. Offering vital insights into the subject matter in self-contained chapters that balance the theory and concrete applications, and especially focusing on open problems, it is essential reading for all researchers and practitioners with an interest in PCA.
This book constitutes the proceedings of the 10th International Conference on Latent Variable Analysis and Signal Separation, LVA/ICA 2012, held in Tel Aviv, Israel, in March 2012. The 20 revised full papers presented together with 42 revised poster papers, 1 keynote lecture, and 2 overview papers for the regular, as well as for the special session were carefully reviewed and selected from numerous submissions. Topics addressed are ranging from theoretical issues such as causality analysis and measures, through novel methods for employing the well-established concepts of sparsity and non-negativity for matrix and tensor factorization, down to a variety of related applications ranging from audio and biomedical signals to precipitation analysis.