You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume provides readers with a collection of the latest protocols used to study plant genome editing and trait engineering. The chapters in this book are organized into five parts: genome engineering systems; machinery design and validation; delivery tools; generation and analysis of engineering materials; and crop genome engineering applications. The chapters cover topics such as methods of applying the popular CRISPR-Cas9 or CRISPR-Cas12 systems for editing genomes in different crop species, the use of small synthetic plastome for potato genome engineering, and the use of CRISPR-Cas9 for algal cell genome engineering. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and comprehensive, Plant Genome Engineering: Methods and Protocols is a valuable tool for researchers interested in learning more about this developing and important field.
None
Over the past 50 years, biotechnology has been the major driving force for increasing crop productivity. Particularly, advances in plant genetic engineering technologies have opened up vast new opportunities for plant researchers and breeders to create new crop varieties with desirable traits. Recent development of precise genome modification methods, such as targeted gene knock-out/knock-in and precise gene replacement, moves genetic engineering to another level and offers even more potentials for improving crop production. The work provides an overview of the latest advances on precise genomic engineering technologies in plants. Topics include recombinase and engineered nucleases-mediated targeted modification, negative/positive selection-based homologous recombination and oligo nucleotide-mediated recombination. Finally, challenges and impacts of the new technologies on present regulations for genetic modification organisms (GMOs) will be discussed.
Comprehensive, systematic review of advances in key CRISPR/Cas technologies, such as TALENS and zinc finger nucleases, double-strand break repair techniques, insertion-based genome edits, base editing, guide RNAs, gRNA/Cas9 constructs and CRISPR/Cas off targeting Covers both techniques and their practical application to particular cereal and other crops Discusses challenges in regulating this emerging technology