You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
An accessible introduction and essential reference for an approach to machine learning that creates highly accurate prediction rules by combining many weak and inaccurate ones. Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate “rules of thumb.” A remarkably rich theory has evolved around boosting, with connections to a range of topics, including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterio...
This book constitutes the refereed proceedings of the 10th International Conference on Algorithmic Learning Theory, ALT'99, held in Tokyo, Japan, in December 1999. The 26 full papers presented were carefully reviewed and selected from a total of 51 submissions. Also included are three invited papers. The papers are organized in sections on Learning Dimension, Inductive Inference, Inductive Logic Programming, PAC Learning, Mathematical Tools for Learning, Learning Recursive Functions, Query Learning and On-Line Learning.
This book constitutes the refereed proceedings of the 4th European Conference on Computational Learning Theory, EuroCOLT'99, held in Nordkirchen, Germany in March 1999. The 21 revised full papers presented were selected from a total of 35 submissions; also included are two invited contributions. The book is divided in topical sections on learning from queries and counterexamples, reinforcement learning, online learning and export advice, teaching and learning, inductive inference, and statistical theory of learning and pattern recognition.
A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms. This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics. Foundations of Machine Learning is unique in its focus on the an...
This volume contains papers presented at the Eighteenth Annual Conference on Learning Theory (previously known as the Conference on Computational Learning Theory) held in Bertinoro, Italy from June 27 to 30, 2005. The technical program contained 45 papers selected from 120 submissions, 3 open problems selected from among 5 contributed, and 2 invited lectures. The invited lectures were given by Sergiu Hart on “Uncoupled Dynamics and Nash Equilibrium”, and by Satinder Singh on “Rethinking State, Action, and Reward in Reinforcement Learning”. These papers were not included in this volume. The Mark Fulk Award is presented annually for the best paper co-authored by a student. The student ...
This book constitutes the refereed proceedings of the 19th Annual Conference on Learning Theory, COLT 2006, held in Pittsburgh, Pennsylvania, USA, June 2006. The book presents 43 revised full papers together with 2 articles on open problems and 3 invited lectures. The papers cover a wide range of topics including clustering, un- and semi-supervised learning, statistical learning theory, regularized learning and kernel methods, query learning and teaching, inductive inference, and more.
The annual Neural Information Processing Systems (NIPS) conference is the flagship meeting on neural computation and machine learning. This volume contains the papers presented at the December 2006 meeting, held in Vancouver.
This book presents the proceedings of the 24th European Conference on Artificial Intelligence (ECAI 2020), held in Santiago de Compostela, Spain, from 29 August to 8 September 2020. The conference was postponed from June, and much of it conducted online due to the COVID-19 restrictions. The conference is one of the principal occasions for researchers and practitioners of AI to meet and discuss the latest trends and challenges in all fields of AI and to demonstrate innovative applications and uses of advanced AI technology. The book also includes the proceedings of the 10th Conference on Prestigious Applications of Artificial Intelligence (PAIS 2020) held at the same time. A record number of ...
This book constitutes the refereed proceedings of the 17th International Conference on Algorithmic Learning Theory, ALT 2006, held in Barcelona, Spain in October 2006, colocated with the 9th International Conference on Discovery Science, DS 2006. The 24 revised full papers presented together with the abstracts of five invited papers were carefully reviewed and selected from 53 submissions. The papers are dedicated to the theoretical foundations of machine learning.
S is a high-level language for manipulating, analysing and displaying data. It forms the basis of two highly acclaimed and widely used data analysis software systems, the commercial S-PLUS® and the Open Source R. This book provides an in-depth guide to writing software in the S language under either or both of those systems. It is intended for readers who have some acquaintance with the S language and want to know how to use it more effectively, for example to build re-usable tools for streamlining routine data analysis or to implement new statistical methods. One of the outstanding strengths of the S language is the ease with which it can be extended by users. S is a functional language, a...