You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The Compound-Nuclear Reaction and Related Topics (CNR*) international workshop series was initiated in 2007 with a meeting near Yosemite National Park. It has since been held in Bordeaux (2009), Prague (2011), Sao Paulo (2013), Tokyo (2015), and Berkeley, California (2018). The workshop series brings together experts in nuclear theory, experiment, data evaluations, and applications, and fosters interactions among these groups. Topics of interest include: nuclear reaction mechanisms, optical model, direct reactions and the compound nucleus, pre-equilibrium reactions, fusion and fission, cross section measurements (direct and indirect methods), Hauser-Feshbach theory (limits and extensions), compound-nuclear decays, particle and gamma emission, level densities, strength functions, nuclear structure for compound-nuclear reactions, nuclear energy, nuclear astrophysics, and other topics. This peer-reviewed proceedings volume presents papers and poster summaries from the 6th International Workshop on Compound-Nuclear Reactions and Related Topics CNR*18, held on September 24-28, 2018, at Lawrence Berkeley National Lab, Berkeley, CA.
The enormous advances in observational techniques over the last two decades has produced a wealth of data and unexpected discoveries which have helped to reshape astrophysics as a field with well-formulated theories and sophisticated numerical calculations. In nuclear particle physics, plasma physics, as well as in general relativity, the Universe has become a laboratory for cutting-edge research. The courses collected in the book are intended to provide students with this insight, giving a general background on each topic such as cosmic rays, nuclear and neutrino astrophysics, solar physics and strong fields, as well as a presentation of the current research and open problems. The book is aimed at graduate students in physics and astrophysics, as well as researchers, bridging a gap between the specialized reviews and the comprehensive books.
Quantum chaos is becoming a very wide field that ranges from experiments to theoretical physics and purely mathematical issues. In view of this grand span, Nobel Symposium 116 focused on experiments and theory, and attempted to encourage interplay between them. There was emphasis on the interdisciplinary character of the subject, involving a broad range of subjects in physics, including condensed matter physics, nuclear physics, atomic physics and elementary particle physics. The physics involved in quantum chaos has much in common with acoustics, microwaves, optics, etc., and therefore the symposium also covered aspects of wave chaos in this broader sense. The program was structured according to the following areas: manifestations of classical chaos in quantum systems; transport phenomena; quantal spectra in terms of periodic orbits; semiclassical and random matrix approaches; quantum chaos in interacting systems; chaos and tunneling; wave-dynamic chaos. This important book constitutes the proceedings of the symposium.
This book is a unique collection of reviews that share a common topic, emergent phenomena in atomic nuclei, while revealing the multifaceted nature of the subject, from quarks to heavy nuclei. It tells an amazing story of a decades-long journey of trials and successes, up to present days, with the aim to understand the vast array of experimental data and the fundamentals of strongly interacting fermions. The emphasis is on discovering emergent orderly patterns amidst the overarching complexity of many-particle quantum-mechanical systems. Recent findings are discussed within an interesting framework: a combination of nuclear theory and experiment, of group theory and computational science, an...
According to the big bang theory, our Universe began in a state of unimaginably high energy and density, contained in a space of subatomic dimensions. At that time, unlike today, the fundamental forces of nature were presumably unified and the particles present were interacting at energies not attainable by present-day accelerators. Underground laboratories provide the conditions to investigate processes involving rare phenomena in matter and to detect the weak effects of highly elusive particles by replicating similar environments to those once harnessed during the earliest states of the Earth. These laboratories now appear to be the gateway to understanding the physics of the grand unifica...
Bringing together idiomatic Python programming, foundational numerical methods, and physics applications, this is an ideal standalone textbook for courses on computational physics. All the frequently used numerical methods in physics are explained, including foundational techniques and hidden gems on topics such as linear algebra, differential equations, root-finding, interpolation, and integration. The second edition of this introductory book features several new codes and 140 new problems (many on physics applications), as well as new sections on the singular-value decomposition, derivative-free optimization, Bayesian linear regression, neural networks, and partial differential equations. The last section in each chapter is an in-depth project, tackling physics problems that cannot be solved without the use of a computer. Written primarily for students studying computational physics, this textbook brings the non-specialist quickly up to speed with Python before looking in detail at the numerical methods often used in the subject.
"The science-fiction genre known as steampunk juxtaposes futuristic technologies with Victorian settings. This fantasy is becoming reality at the intersection of two scientific fields-twenty-first-century quantum physics and nineteenth-century thermodynamics, or the study of energy-in a discipline known as quantum steampunk"--
Maximum entropy and Bayesian methods have fundamental, central roles in scientific inference, and, with the growing availability of computer power, are being successfully applied in an increasing number of applications in many disciplines. This volume contains selected papers presented at the Thirteenth International Workshop on Maximum Entropy and Bayesian Methods. It includes an extensive tutorial section, and a variety of contributions detailing application in the physical sciences, engineering, law, and economics. Audience: Researchers and other professionals whose work requires the application of practical statistical inference.
applications to the structure of atomic nuclei. The author systematically develops these models from the elementary level, through an introduction to tensor algebra, to the use of group theory in spectroscopy. The book's extensive and detailed appendix includes a large selection of useful formulae of tensor algebra and spectroscopy. The serious graduate student, as well as the professional physicist, will find this complete treatment of the shell model to be an invaluable addition to the literature.
The Highly Specialized Seminar on "Symmetries in Nuclear Structure", held in Erice, Italy, in March 2003, celebrated the career and the remarkable achievements of Francesco Iachello, on the occasion of his 60th birthday. Since the development of the interacting boson model in the early 1970s, the ideas of Iachello have provided a variety of frameworks for understanding collective behaviour in nuclear structure, founded on the concepts of dynamical symmetries and spectrum-generating algebras. The original ideas, which were developed for the description of atomic nuclei, have now been successfully extended to cover spectroscopic behaviour in other fields, such as molecular or hadronic spectra....