You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
When researchers gather around lunch tables, at conferences, or in bars, there are some topics that are more or less compulsory. The discussions are about the ho- less management of the university or the lab where they are working, the lack of funding for important research, politicians’ inability to grasp the potential of a p- ticularly promising ?eld, and the endless series of committees that seem to produce very little progress. It is common to meet excellent researchers claiming that they have almost no time to do research because writing applications, lecturing, and - tending to committee work seem to take most of their time. Very few ever come into a position to do something about it...
Leading researchers have contributed state-of-the-art chapters to this overview of high-performance computing in biomedical research. The book includes over 30 pages of color illustrations. Some of the important topics featured in the book include the following:
The cardiac system represents one of the most exciting challenges to human ingenuity. Critical to our survival, it consists of a tantalizing array of interacting phenomena, from ionic microscopic transport, membrane channels and receptors through cellular metabolism, energy production to fiber mechanics, microcirculation, electrical activation to the global, clinically observed, function, which is measured by pressure, volume, coronary flow, heart rate, shape changes and responds to imposed loads and pharmaceutical challenges. It is a complex interdisciplinary system requiring the joint efforts of the life sciences, the exact sciences, engineering and technology to understand and control the...
This volume, the result of three days of interactive sessions among world leaders in the cardiac sciences, summarizes the most up-to-date information about development and cardiogenesis signaling in cell-based therapy, as well as developmental aspects of the formation of the embryonic heart, including the effect of mechanical load on differentiation. Other topics covered include: signaling and repair strategies, cell and gene therapy for the treatment of postmyocardial infarction, signaling, vascularization methods in engineering embryonic cardiac tissue, and molecular methods to improve survival of human embryonic stem cell–derived cardiomyocytes; developmental and evolutional cardiology;...
Heart Physiology and Pathophysiology, 4E, provides the foundation for the scientific understanding of heart function and dysfunction, and bridges the gap between basic cardiovascular science and clinical cardiology. This comprehensive text covers all the important aspects of the heart and vascular system. The most important and relevant disorders are presented, with emphasis on the mechanisms involved. The first three editions of this book developed a reputation as the leading reference in cardiovascular science for researchers and academic cardiologists. This recent edition has been updated, expanded, and includes a number of new contributors. It has also been remodeled to expand its usage ...
ECG imaging was performed in humans to reconstruct ventricular activation patterns and localize their excitation origins. The precision of the non-invasive reconstructions was evaluated against invasive measurements and found to be in line with the state-of-the-art literature. Statistics were produced for various excitation origins and reveal the beat-to-beat robustness of the imaging method.
The visionary science behind the digital human twins that will enhance our health and our future Virtual You is a panoramic account of efforts by scientists around the world to build digital twins of human beings, from cells and tissues to organs and whole bodies. These virtual copies will usher in a new era of personalized medicine, one in which your digital twin can help predict your risk of disease, participate in virtual drug trials, shed light on the diet and lifestyle changes that are best for you, and help identify therapies to enhance your well-being and extend your lifespan—but thorny challenges remain. In this deeply illuminating book, Peter Coveney and Roger Highfield reveal wha...
In Heart Cell Communication in Health and Disease an extensive review of different aspects of heart cell communication is presented. The book starts with the fundamental concept that cardiac cells are communicated, and then proceeds to the role of gap junctions in heart development, the molecular biology of gap junctions, the biophysics of the intercellular channels, the control of junctional conductance and the influence of gap junctions on impulse propagation. This is the first time that a single volume has described cell communication in the normal heart and under different pathological conditions such as heart failure, coronary disease, myocardial ischemia and cardiac arrhythmias. In this way the process of cell communication is analyzed at different levels of complexity, providing the reader with a wide view of this field and its relevance to cardiology.
Cardiac Electrophysiology: From Cell to Bedside puts the latest knowledge in this subspecialty at your fingertips, giving you a well-rounded, expert grasp of every cardiac electrophysiology issue that affects your patient management. Drs. Zipes, Jalife, and a host of other world leaders in cardiac electrophysiology use a comprehensive, multidisciplinary approach to guide you through all of the most recent cardiac drugs, techniques, and technologies. Get well-rounded, expert views of every cardiac electrophysiology issue that affects your patient management from preeminent authorities in cardiology, physiology, pharmacology, pediatrics, biophysics, pathology, cardiothoracic surgery, and biome...
The tenth Henry Goldberg Workshop is an excellent occasion to recall our goals and celebrate some of our humble achievements. Vision and love of our fellow man are combined here to: 1) Foster interdisciplinary interaction between leading world scientists and clinical cardiologists so as to identify missing knowledge and catalyze new research ideas; 2) relate basic microscale, molecular and subcellular phenomena to the global clinically manifested cardiac performance; 3) apply conceptual modelling and quantitative analysis to better explore, describe, and understand cardiac physiology; 4) interpret available clinical data and design new revealing experiments; and 5) enhance international coop...