You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is a graduate text on the incompressible Navier-Stokes system, which is of fundamental importance in mathematical fluid mechanics as well as in engineering applications. The goal is to give a rapid exposition on the existence, uniqueness, and regularity of its solutions, with a focus on the regularity problem. To fit into a one-year course for students who have already mastered the basics of PDE theory, many auxiliary results have been described with references but without proofs, and several topics were omitted. Most chapters end with a selection of problems for the reader. After an introduction and a careful study of weak, strong, and mild solutions, the reader is introduced to p...
Included in this volume are the Invited Talks given at the 5th International Congress of Industrial and Applied Mathematics. The authors of these papers are all acknowledged masters of their fields, having been chosen through a rigorous selection process by a distinguished International Program Committee. This volume presents an overview of contemporary applications of mathematics, with the coverage ranging from the rhythms of the nervous system, to optimal transportation, elasto-plasticity, computational drug design, hydrodynamic and meteorological modeling, and valuation in financial markets. Many papers are direct products of the computer revolution: grid generation, multi-scale modeling, high-dimensional numerical integration, nonlinear optimization, accurate floating-point computations and advanced iterative methods. Other papers demonstrate the close dependence on developments in mathematics itself, and the increasing importance of statistics. Additional topics relate to the study of properties of fluids and fluid-flows, or add to our understanding of Partial Differential Equations.
This contributed volume is based on talks given at the August 2016 summer school “Fluids Under Pressure,” held in Prague as part of the “Prague-Sum” series. Written by experts in their respective fields, chapters explore the complex role that pressure plays in physics, mathematical modeling, and fluid flow analysis. Specific topics covered include: Oceanic and atmospheric dynamics Incompressible flows Viscous compressible flows Well-posedness of the Navier-Stokes equations Weak solutions to the Navier-Stokes equations Fluids Under Pressure will be a valuable resource for graduate students and researchers studying fluid flow dynamics.
The aim of this book is to provide beginning graduate students who completed the first two semesters of graduate-level analysis and PDE courses with a first exposure to the mathematical analysis of the incompressible Euler and Navier-Stokes equations. The book gives a concise introduction to the fundamental results in the well-posedness theory of these PDEs, leaving aside some of the technical challenges presented by bounded domains or by intricate functional spaces. Chapters 1 and 2 cover the fundamentals of the Euler theory: derivation, Eulerian and Lagrangian perspectives, vorticity, special solutions, existence theory for smooth solutions, and blowup criteria. Chapters 3, 4, and 5 cover ...
Praise for the first edition “The author is an outstanding expert in harmonic analysis who has made important contributions. The book contains rigorous proofs of a number of the latest results in the field. I strongly recommend the book to postgraduate students and researchers working on challenging problems of harmonic analysis and mathematical theory of Navier-Stokes equations." —Gregory Seregin, St Hildas College, Oxford University “"This is a great book on the mathematical aspects of the fundamental equations of hydrodynamics, the incompressible Navier-Stokes equations. It covers many important topics and recent results and gives the reader a very good idea about where the theory s...
The volume is from the proceedings of the international conference held in celebration of Stanley Osher's sixtieth birthday. It presents recent developments and exciting new directions in scientific computing and partial differential equations for time dependent problems and its interplay with other fields, such as image processing, computer vision and graphics. Over the past decade, there have been very rapid developments in the field. This volume emphasizes the strong interaction of advanced mathematics with real-world applications and algorithms. The book is suitable for graduate students and research mathematicians interested in scientific computing and partial differential equations.
This volume contains the proceedings of the International Conference on Vorticity, Rotation and Symmetry (IV)—Complex Fluids and the Issue of Regularity, held from May 8–12, 2017, in Luminy, Marseille, France. The papers cover topics in mathematical fluid mechanics ranging from the classical regularity issue for solutions of the 3D Navier-Stokes system to compressible and non-Newtonian fluids, MHD flows and mixtures of fluids. Topics of different kinds of solutions, boundary conditions, and interfaces are also discussed.
This book presents a self-contained introduction to the analytic foundation of a level set approach for various surface evolution equations including curvature flow equations. These equations are important in many applications, such as material sciences, image processing and differential geometry. The goal is to introduce a generalized notion of solutions allowing singularities, and to solve the initial-value problem globally-in-time in a generalized sense. Various equivalent definitions of solutions are studied. Several new results on equivalence are also presented. Moreover, structures of level set equations are studied in detail. Further, a rather complete introduction to the theory of vi...
Herbert Amann's work is distinguished and marked by great lucidity and deep mathematical understanding. The present collection of 31 research papers, written by highly distinguished and accomplished mathematicians, reflect his interest and lasting influence in various fields of analysis such as degree and fixed point theory, nonlinear elliptic boundary value problems, abstract evolutions equations, quasi-linear parabolic systems, fluid dynamics, Fourier analysis, and the theory of function spaces. Contributors are A. Ambrosetti, S. Angenent, W. Arendt, M. Badiale, T. Bartsch, Ph. Bénilan, Ph. Clément, E. Faöangová, M. Fila, D. de Figueiredo, G. Gripenberg, G. Da Prato, E.N. Dancer, D. Daners, E. DiBenedetto, D.J. Diller, J. Escher, G.P. Galdi, Y. Giga, T. Hagen, D.D. Hai, M. Hieber, H. Hofer, C. Imbusch, K. Ito, P. Krejcí, S.-O. Londen, A. Lunardi, T. Miyakawa, P. Quittner, J. Prüss, V.V. Pukhnachov, P.J. Rabier, P.H. Rabinowitz, M. Renardy, B. Scarpellini, B.J. Schmitt, K. Schmitt, G. Simonett, H. Sohr, V.A. Solonnikov, J. Sprekels, M. Struwe, H. Triebel, W. von Wahl, M. Wiegner, K. Wysocki, E. Zehnder and S. Zheng.
This collection of new and original papers on mathematical aspects of nonlinear dispersive equations includes both expository and technical papers that reflect a number of recent advances in the field. The expository papers describe the state of the art and research directions. The technical papers concentrate on a specific problem and the related analysis and are addressed to active researchers. The book deals with many topics that have been the focus of intensive research and, in several cases, significant progress in recent years, including hyperbolic conservation laws, Schrödinger operators, nonlinear Schrödinger and wave equations, and the Euler and Navier-Stokes equations.