You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The monograph gives a detailed exposition of the theory of general elliptic operators (scalar and matrix) and elliptic boundary value problems in Hilbert scales of Hörmander function spaces. This theory was constructed by the authors in a number of papers published in 2005–2009. It is distinguished by a systematic use of the method of interpolation with a functional parameter of abstract Hilbert spaces and Sobolev inner product spaces. This method, the theory and their applications are expounded for the first time in the monographic literature. The monograph is written in detail and in a reader-friendly style. The complete proofs of theorems are given. This monograph is intended for a wide range of mathematicians whose research interests concern with mathematical analysis and differential equations.
Rapid progress in quantum theory brings us new important results which are often not immediately clear to all who need them. But fortunately, this is also followed by simplifications and unifications of our previous concepts. The inverse problem method ("The most beautiful idea of the XX-th century" - Zakharov et aI., 1980) has just both these aspects. It is rather astonishing that it took 50 years after the foundation of quantum mechanics for the creation of the "pictures" showing the direct connection of obser vables with interactions. Recently, illustrations of this type began to appear in the literature (e. g., how potentials are deformed with thc shift of one energy level or change of s...
Expository articles describing the role Hardy spaces, Bergman spaces, Dirichlet spaces, and Hankel and Toeplitz operators play in modern analysis.
The Current Index to Statistics (CIS) is a bibliographic index of publications in statistics, probability, and related fields.
This book provides a unique and unusual introduction to graph theory by one of the founding fathers, and will be of interest to all researchers in the subject. It is not intended as a comprehensive treatise, but rather as an account of those parts of the theory that have been of special interest to the author. Professor Tutte details his experience in the area, and provides a fascinating insight into how he was led to his theorems and the proofs he used. As well as being of historical interest it provides a useful starting point for research, with references to further suggested books as well as the original papers. The book starts by detailing the first problems worked on by Professor Tutte and his colleagues during his days as an undergraduate member of the Trinity Mathematical Society in Cambridge. It covers subjects such as comnbinatorial problems in chess, the algebraicization of graph theory, reconstruction of graphs, and the chromatic eigenvalues. In each case fascinating historical and biographical information about the author's research is provided.
Reissued in the Oxford Classic Texts in the Physical Sciences series, this book provides a clear and systematic introduction to projective geometry, building on concepts from linear algebra.
Symplectic geometry has its origins as a geometric language for classical mechanics. But it has recently exploded into an independent field interconnected with many other areas of mathematics and physics. The goal of the IAS/Park City Mathematics Institute Graduate Summer School on Symplectic Geometry and Topology was to give an intensive introduction to these exciting areas of current research. Included in this proceedings are lecture notes from the following courses: Introductionto Symplectic Topology by D. McDuff; Holomorphic Curves and Dynamics in Dimension Three by H. Hofer; An Introduction to the Seiberg-Witten Equations on Symplectic Manifolds by C. Taubes; Lectures on Floer Homology ...
The publication of this book in 1970 marked the culmination of a particularly exciting period in the history of the topology of manifolds. The world of high-dimensional manifolds had been opened up to the classification methods of algebraic topology by Thom's work in 1952 on transversality and cobordism, the signature theorem of Hirzebruch in 1954, and by the discovery of exotic spheres by Milnor in 1956. In the 1960s, there had been an explosive growth of interest in the surgery method of understanding the homotopy types of manifolds (initially in the differentiable category), including results such as the $h$-cobordism theory of Smale (1960), the classification of exotic spheres by Kervair...
Biology is a source of fascination for most scientists, whether their training is in the life sciences or not. In particular, there is a special satisfaction in discovering an understanding of biology in the context of another science like mathematics. Fortunately there are plenty of interesting (and fun) problems in biology, and virtually all scientific disciplines have become the richer for it. For example, two major journals, Mathematical Biosciences and Journal of Mathematical Biology, have tripled in size since their inceptions 20-25 years ago. The various sciences have a great deal to give to one another, but there are still too many fences separating them. In writing this book we have...