You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Complex metal alloys (CMAs) comprise a huge group of largely unknown alloys and compounds, where many phases are formed with crystal structures based on giant unit cells containing atom clusters, ranging from tens of to more than thousand atoms per unit cell. In these phases, for many phenomena, the physical length scales are substantially smaller than the unit-cell dimension. Hence, these materials offer unique combinations of properties which are mutually exclusive in conventional materials, such as metallic electric conductivity combined with low thermal conductivity, good light absorption with high-temperature stability, high metallic hardness with reduced wetting by liquids, etc.This book is the first of a series of books issued yearly as a deliverable to the European Community of the School established within the European Network of Excellence CMA. Written by reputed experts in the fields of metal physics, surface physics, surface chemistry, metallurgy, and process engineering, this book brings together expertise found inside as well as outside the network to provide a comprehensive overview of the current state of knowledge in CMAs.
Covering the latest research in alloy physics together with the underlying basic principles, this comprehensive book provides a sound understanding of the structural changes in metals and alloys -- ranging from plastic deformation, deformation dynamics and ordering kinetics right up to atom jump processes, first principle calculations and simulation techniques. Alongside fundamental topics, such as crystal defects, phase transformations and statistical thermodynamics, the team of international authors treats such hot areas as nano-size effects, interfaces, and spintronics, as well as technical applications of modern alloys, like data storage and recording, and the possibilities offered by materials design.
The study of crystal structures has had an ever increasing impact on many fields of science such as physics, chemistry, biology, materials science, medicine, pharmacy, metallurgy, mineralogy and geology. Particularly, with the advent of direct methods of structure determination, the data on crystal structures are accumulating at an unbelievable pace and it becomes more and more difficult to oversee this wealth of data. A crude rationalization of the structures of organic compounds and the atom coordinations can be made with the well-known Kekule model, however, no such generally applicable model exists for the structures of inorganiC and particularly intermetallic compounds. There is a need to rationalize the inorganic crystal structures, to find better ways of describing them, of denoting the geometrical relationships between them, of elucidating the electronic factors and of explaining the bonding between the atoms with the aim of not only having a better understanding of the known structures, but also of predicting structural features of new compounds.
Handbook on the Physics and Chemistry of Rare Earths: Including Actinides, Volume 64, the latest release in this continuous series that covers all aspects of rare earth science, including chemistry, life sciences, materials science and physics, presents interesting chapters on a variety of topics, with this release including sections on Structure and properties of Ln2M3Ge5 compounds, Giant magnetocaloric effect materials, Lanthanide-based single-molecule magnets, and Magnetic Refrigeration with Lanthanide-Based Materials. - Presents up-to-date overviews and new developments in the field of rare earths, covering both their physics and chemistry - Contains individual chapters that are comprehensive and broad, along with critical reviews - Provides contributions from highly experienced, invited experts
None
Can a pixie girl with a bum leg and mismatched wings untangle the paranormal puzzles and solve the quirky mystery? A town of wonky magic. A fencer stabbed by her own blade. Can Twizzie untangle the twisted mystery? Twizzle Twist isn't your normal real estate pixie. Nor is St. Maurice your normal Southern California town. The magic in the valley belches at the worst time. Twizzle's mismatched wings and bum leg are the least of her worries. Twiz is fortunate to have friends like the ancient Chinese wizard, the barista mermaid with the bent tail, a pixie cop, and two chili-cheese-dog obsessed mini-dragons to aid her. And she'll need all the help they can muster when the town council leader has ...
Focusing on developments from the past 10-15 years, this volume presents an objective overview of the research in charge density analysis. The most promising methodologies are included, in addition to powerful interpretative tools and a survey of important areas of research.
Women's Contribution to F-element Science, Volume 65 in the Handbook on the Physics and Chemistry of Rare Earths series, highlights new advances in the field, with this new volume presenting interesting chapters on topics such as Rare-Earth Upconversion Luminescence and Its Applications: From Molecular, to Nano and Micro Scales, Control of 4f complexes luminescence and magnetism with (organic) photoswitches, Lanthanide-Based Responsive MRI Probes, Luminescent solar concentrators: current and future applications in smart cities, Lanthanide Chalcogenide Precursors: from luminescence to nanoparticle synthesis, Helical coordination complexes of rare earths and their luminescent properties, and m...
This is the perfect complement to "Chemical Bonding - Across the Periodic Table" by the same editors, who are two of the top scientists working on this topic, each with extensive experience and important connections within the community. The resulting book is a unique overview of the different approaches used for describing a chemical bond, including molecular-orbital based, valence-bond based, ELF, AIM and density-functional based methods. It takes into account the many developments that have taken place in the field over the past few decades due to the rapid advances in quantum chemical models and faster computers.
The field of thermoelectricity has continued to develop rapidly in recent years and remains one of the most exciting areas of research for a materials physicist. The need for sustainable energy has added a technological momentum to the challenge of devising materials with exceptional properties such as low thermal conductivity, high electrical conductivity and a large Seebeck coefficient, and has triggered a global, interdisciplinary effort. More recently, research on thermoelectric materials has promoted and motivated a major research endeavor to clarify the factors affecting thermal conductivity in nanostructures as part of a more general effort to apply nanotechnology to enhance the perfo...