Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Deep Learning: Practical Neural Networks with Java
  • Language: en
  • Pages: 744

Deep Learning: Practical Neural Networks with Java

Build and run intelligent applications by leveraging key Java machine learning libraries About This Book Develop a sound strategy to solve predictive modelling problems using the most popular machine learning Java libraries. Explore a broad variety of data processing, machine learning, and natural language processing through diagrams, source code, and real-world applications This step-by-step guide will help you solve real-world problems and links neural network theory to their application Who This Book Is For This course is intended for data scientists and Java developers who want to dive into the exciting world of deep learning. It will get you up and running quickly and provide you with t...

Java Deep Learning Essentials
  • Language: en
  • Pages: 254

Java Deep Learning Essentials

Dive into the future of data science and learn how to build the sophisticated algorithms that are fundamental to deep learning and AI with Java About This Book Go beyond the theory and put Deep Learning into practice with Java Find out how to build a range of Deep Learning algorithms using a range of leading frameworks including DL4J, Theano and Caffe Whether you're a data scientist or Java developer, dive in and find out how to tackle Deep Learning Who This Book Is For This book is intended for data scientists and Java developers who want to dive into the exciting world of deep learning. It would also be good for machine learning users who intend to leverage deep learning in their projects,...

Deep Learning with Java
  • Language: en
  • Pages: 254

Deep Learning with Java

Solve complex data science tasks through practical applications of deep learning with JavaAbout This Book*Introduces modern machine learning techniques, and dives into deep learning algorithms for practical applications*Build from scratch and library-oriented implementations with Java to fully grasp the structure of deep learning*Get to grips with latest deep learning techniques and learn to implement the core mathematics neededWho This Book Is ForThis book is intended for data scientists and Java developers who want to dive into the exciting world of deep learning. It would also be good for machine learning users who intend to leverage deep learning in their projects, working within a big d...

深層学習教科書 ディープラーニング G検定(ジェネラリスト)公式テキスト 第2版
  • Language: ja
  • Pages: 406

深層学習教科書 ディープラーニング G検定(ジェネラリスト)公式テキスト 第2版

  • Type: Book
  • -
  • Published: 2021-04-27
  • -
  • Publisher: 翔泳社

大好評!デジタル時代の必携リテラシー、G検定の「公式テキスト」の改訂版! 【本書の特徴】 ・大ベストセラー、ディープラーニング G検定 公式テキストの改訂版。 ・改訂された新シラバスに完全準拠。 ・試験運営団体である「日本ディープラーニング協会」が監修。 ・章末問題を大増量。分かりやすい解説付き。 ・ディープラーニングに関する入門書としても最適。 【対象読者】 ・ G検定を受験しようと思っている人 ・ディープラーニングについて概要を学びたい人 ・ディープラーニングを事業活用しようと思...

Web Designing 2019年6月号
  • Language: ja
  • Pages: 148

Web Designing 2019年6月号

企画を仕事につなげる必勝ノウハウを身に付けろ! ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ Webビジネスで[お金を生み出す]企画力! 3つのプロセスそれぞれで 【勝てるメソッド】を身につけよう! ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 「自信に満ちた企画であってもなぜだか通らなかった」「用意周到に進めたつもりでもコンセンサスが得られなかった」。企画に関しては、...

Web Designing 2019年8月号
  • Language: ja
  • Pages: 148

Web Designing 2019年8月号

動画を作った! そのあとどうするの? 「つくるだけ」では役に立たない! Web動画を課題解決につなげる 必勝方程式 数年前より、Webマーケティング界隈では動画を使った施策が主流となってきました。 主要SNSプラットフォームも軒並み動画への動きを活発化させ、インスタグラムストーリーやFacebook LIVE、TikTokなどさまざまなサービスが登場しており、「動画は当たり前」という状況はますます加速しています。 これまでは「動画をつくる」ということに関してお金と時間、人手がかかり大きな障壁となっていました...

Web Designing 2015年5月号
  • Language: ja
  • Pages: 148

Web Designing 2015年5月号

スマホ時代のUI設計/8人のニューエイジ・クリエイター ■特集1:スマホ時代のUI設計 準備OK? モバイルフレンドリーなサイトのための技術と実装 ■特集2:8人のニューエイジ・クリエイター 世界を驚かすインタラクティブに必要な素養とスキルがみえる ■ツクルヒト HAROSHI(アーティスト)_使い古したスケートボードで生む「躍動する彫刻」 ■肖像 −Web Craftman's Portrait−木村匡孝(TASCO inc.)_アーティストではない、“工場長”のものづくりの原点 ■Monthly Focus Unity5_2年ぶりのメジャーバージョンアップの中身 ■...

Processing
  • Language: en
  • Pages: 738

Processing

  • Type: Book
  • -
  • Published: 2007-12-31
  • -
  • Publisher: Apress

First Processing book on the market Processing is a nascent technology rapidly increasing in popularity Links with the creators of Processing will help sell the book

Machine Learning in Java
  • Language: en
  • Pages: 258

Machine Learning in Java

  • Type: Book
  • -
  • Published: 2016-04-29
  • -
  • Publisher: Unknown

Design, build, and deploy your own machine learning applications by leveraging key Java machine learning librariesAbout This Book- Develop a sound strategy to solve predictive modelling problems using the most popular machine learning Java libraries- Explore a broad variety of data processing, machine learning, and natural language processing through diagrams, source code, and real-world applications- Packed with practical advice and tips to help you get to grips with applied machine learningWho This Book Is ForIf you want to learn how to use Java's machine learning libraries to gain insight from your data, this book is for you. It will get you up and running quickly and provide you with the...

Fundamentals of Deep Learning
  • Language: en
  • Pages: 298

Fundamentals of Deep Learning

With the reinvigoration of neural networks in the 2000s, deep learning has become an extremely active area of research, one that’s paving the way for modern machine learning. In this practical book, author Nikhil Buduma provides examples and clear explanations to guide you through major concepts of this complicated field. Companies such as Google, Microsoft, and Facebook are actively growing in-house deep-learning teams. For the rest of us, however, deep learning is still a pretty complex and difficult subject to grasp. If you’re familiar with Python, and have a background in calculus, along with a basic understanding of machine learning, this book will get you started. Examine the foundations of machine learning and neural networks Learn how to train feed-forward neural networks Use TensorFlow to implement your first neural network Manage problems that arise as you begin to make networks deeper Build neural networks that analyze complex images Perform effective dimensionality reduction using autoencoders Dive deep into sequence analysis to examine language Learn the fundamentals of reinforcement learning