You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This eagerly awaited textbook covers everything the graduate student in probability wants to know about Brownian motion, as well as the latest research in the area. Starting with the construction of Brownian motion, the book then proceeds to sample path properties like continuity and nowhere differentiability. Notions of fractal dimension are introduced early and are used throughout the book to describe fine properties of Brownian paths. The relation of Brownian motion and random walk is explored from several viewpoints, including a development of the theory of Brownian local times from random walk embeddings. Stochastic integration is introduced as a tool and an accessible treatment of the potential theory of Brownian motion clears the path for an extensive treatment of intersections of Brownian paths. An investigation of exceptional points on the Brownian path and an appendix on SLE processes, by Oded Schramm and Wendelin Werner, lead directly to recent research themes.
Starting around the late 1950s, several research communities began relating the geometry of graphs to stochastic processes on these graphs. This book, twenty years in the making, ties together research in the field, encompassing work on percolation, isoperimetric inequalities, eigenvalues, transition probabilities, and random walks. Written by two leading researchers, the text emphasizes intuition, while giving complete proofs and more than 850 exercises. Many recent developments, in which the authors have played a leading role, are discussed, including percolation on trees and Cayley graphs, uniform spanning forests, the mass-transport technique, and connections on random walks on graphs to embedding in Hilbert space. This state-of-the-art account of probability on networks will be indispensable for graduate students and researchers alike.
We live in a highly connected world with multiple self-interested agents interacting and myriad opportunities for conflict and cooperation. The goal of game theory is to understand these opportunities. This book presents a rigorous introduction to the mathematics of game theory without losing sight of the joy of the subject. This is done by focusing on theoretical highlights (e.g., at least six Nobel Prize winning results are developed from scratch) and by presenting exciting connections of game theory to other fields such as computer science (algorithmic game theory), economics (auctions and matching markets), social choice (voting theory), biology (signaling and evolutionary stability), an...
Examines in some depth two important classes of point processes, determinantal processes and 'Gaussian zeros', i.e., zeros of random analytic functions with Gaussian coefficients. This title presents a primer on modern techniques on the interface of probability and analysis.
A mathematically rigorous introduction to fractals, emphasizing examples and fundamental ideas while minimizing technicalities.
Following the publication of the Japanese edition of this book, several inter esting developments took place in the area. The author wanted to describe some of these, as well as to offer suggestions concerning future problems which he hoped would stimulate readers working in this field. For these reasons, Chapter 8 was added. Apart from the additional chapter and a few minor changes made by the author, this translation closely follows the text of the original Japanese edition. We would like to thank Professor J. L. Doob for his helpful comments on the English edition. T. Hida T. P. Speed v Preface The physical phenomenon described by Robert Brown was the complex and erratic motion of grains of pollen suspended in a liquid. In the many years which have passed since this description, Brownian motion has become an object of study in pure as well as applied mathematics. Even now many of its important properties are being discovered, and doubtless new and useful aspects remain to be discovered. We are getting a more and more intimate understanding of Brownian motion.
This IMA Volume in Mathematics and its Applications CLASSICAL AND MODERN BRANCHING PROCESSES is based on the proceedings with the same title and was an integral part of the 1993-94 IMA program on "Emerging Applications of Probability." We would like to thank Krishna B. Athreya and Peter J agers for their hard work in organizing this meeting and in editing the proceedings. We also take this opportunity to thank the National Science Foundation, the Army Research Office, and the National Security Agency, whose financial support made this workshop possible. A vner Friedman Robert Gulliver v PREFACE The IMA workshop on Classical and Modern Branching Processes was held during June 13-171994 as par...
This book brings a reader to the cutting edge of several important directions of the contemporary probability theory, which in many cases are strongly motivated by problems in statistical physics. The authors of these articles are leading experts in the field and the reader will get an exceptional panorama of the field from the point of view of scientists who played, and continue to play, a pivotal role in the development of the new methods and ideas, interlinking it with geometry, complex analysis, conformal field theory, etc., making modern probability one of the most vibrant areas in mathematics.
John Walsh, one of the great masters of the subject, has written a superb book on probability. It covers at a leisurely pace all the important topics that students need to know, and provides excellent examples. I regret his book was not available when I taught such a course myself, a few years ago. —Ioannis Karatzas, Columbia University In this wonderful book, John Walsh presents a panoramic view of Probability Theory, starting from basic facts on mean, median and mode, continuing with an excellent account of Markov chains and martingales, and culminating with Brownian motion. Throughout, the author's personal style is apparent; he manages to combine rigor with an emphasis on the key ideas...
In a surprising sequence of developments, the longest increasing subsequence problem, originally mentioned as merely a curious example in a 1961 paper, has proven to have deep connections to many seemingly unrelated branches of mathematics, such as random permutations, random matrices, Young tableaux, and the corner growth model. The detailed and playful study of these connections makes this book suitable as a starting point for a wider exploration of elegant mathematical ideas that are of interest to every mathematician and to many computer scientists, physicists and statisticians. The specific topics covered are the Vershik-Kerov-Logan-Shepp limit shape theorem, the Baik-Deift-Johansson theorem, the Tracy-Widom distribution, and the corner growth process. This exciting body of work, encompassing important advances in probability and combinatorics over the last forty years, is made accessible to a general graduate-level audience for the first time in a highly polished presentation.