You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Microcontinuum field theories extend classical field theories to microscopic spaces and short time scales. This volume is concerned with the kinematics of microcontinua. It begins with a discussion of strain, stress tensors, balance laws, and constitutive equations, and then discusses applications of the fundamental ideas to the theory of elasticity. The ideas developed here are important in modeling the fluid or elastic properties of porous media, polymers, liquid crystals, slurries, and composite materials.
The 25th Anniversary Meeting of the Society of Engineering Science was held as a joint conference with the Applied Mechanics Division of the American Society of Mechanical Engineers at the University of California, Berkeley from June 20-22, 1988. With the encouragement and support of the SES, we decided to organize a symposium in honor of A. C. Eringen: the founding president of the Society of Engineering Science who provided pioneering leadership during the critical first decade of the Society's existence. We felt that there was no better way to do this than with a Symposium on Engineering Science -- the field that A. C. Eringen has devoted his life to. Professor Eringen had the foresight, ...
Nonlocal continuum field theories are concerned with material bodies whose behavior at any interior point depends on the state of all other points in the body -- rather than only on an effective field resulting from these points -- in addition to its own state and the state of some calculable external field. Nonlocal field theory extends classical field theory by describing the responses of points within the medium by functionals rather than functions (the "constitutive relations" of classical field theory). Such considerations are already well known in solid-state physics, where the nonlocal interactions between the atoms are prevalent in determining the properties of the material. The tool...
From the inception of the theory of elasticity with Navier A821) and Cauchy A828), the dynamical problems of elasticity and the subject of wave propagations in elastic solids have been under intense study by a large number of workers. In fact the literature is so extensive that any desire to write accounts on the subject immediately induces discouragement on the part of a prospective author. For it is impossible to do justice to all aspects of this wide field in any one- or two-volume treatise. Perhaps, partially, it is this concern that kept this important field barren of books for nearly two centuries.
The electrodynamics of continua is a branch ofthe physical sciences concerned with the interaction of electromagnetic fields with deformable bodies. De formable bodies are considered to be continua endowed with continuous distributions of mass and charge. The theory of electromagnetic continua is concerned with the determination of deformations, motions, stress, and elec tromagnetic fields developed in bodies upon the applications of external loads. External loads may be of mechanical origin (e.g., forces, couples, constraints placed on the surface of the body, and initial and boundary conditions arising from thermal and other changes) and/or electromagnetic origin (e.g., electric, magnetic,...
Elastodynamics, Volume II: Linear Theory is a continuation of Volume I and discusses the dynamical theory of linear isotropic elasticity. The volume deals with the fundamental theorems regarding elastodynamics and the different mathematical methods of solution and their employment in one, two, and three dimensions. The text outlines the fundamentals of linear elastodynamics and explains basic equations, displacement formulation, stress formulation, and the uniqueness theorem of elastodynamics. The book also investigates elastodynamic problems involving one-space dimension in governing boundaries, equations, and initial conditions. The book then compares two-dimensional problems as being subj...
This dictionary offers clear and reliable explanations of over 100 keywords covering the entire field of non-classical continuum mechanics and generalized mechanics, including the theory of elasticity, heat conduction, thermodynamic and electromagnetic continua, as well as applied mathematics. Every entry includes the historical background and the underlying theory, basic equations and typical applications. The reference list for each entry provides a link to the original articles and the most important in-depth theoretical works. Last but not least, ever y entry is followed by a cross-reference to other related subject entries in the dictionary.