You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The problem of counting the number of self-avoiding polygons on a square grid, - therbytheirperimeterortheirenclosedarea,is aproblemthatis soeasytostate that, at ?rst sight, it seems surprising that it hasn’t been solved. It is however perhaps the simplest member of a large class of such problems that have resisted all attempts at their exact solution. These are all problems that are easy to state and look as if they should be solvable. They include percolation, in its various forms, the Ising model of ferromagnetism, polyomino enumeration, Potts models and many others. These models are of intrinsic interest to mathematicians and mathematical physicists, but can also be applied to many oth...
The self-avoiding walk is a mathematical model that has important applications in statistical mechanics and polymer science. In spite of its simple definition—a path on a lattice that does not visit the same site more than once—it is difficult to analyze mathematically. The Self-Avoiding Walk provides the first unified account of the known rigorous results for the self-avoiding walk, with particular emphasis on its critical behavior. Its goals are to give an account of the current mathematical understanding of the model, to indicate some of the applications of the concept in physics and in chemistry, and to give an introduction to some of the nonrigorous methods used in those fields. Top...
This volumes provides a comprehensive review of interactions between differential geometry and theoretical physics, contributed by many leading scholars in these fields. The contributions promise to play an important role in promoting the developments in these exciting areas. Besides the plenary talks, the coverage includes: models and related topics in statistical physics; quantum fields, strings and M-theory; Yang-Mills fields, knot theory and related topics; K-theory, including index theory and non-commutative geometry; mirror symmetry, conformal and topological quantum field theory; development of integrable systems; and random matrix theory.
This volume contains the proceedings of the AMS Special Sessions on Algorithmic Probability and Combinatories held at DePaul University on October 5-6, 2007 and at the University of British Columbia on October 4-5, 2008. This volume collects cutting-edge research and expository on algorithmic probability and combinatories. It includes contributions by well-established experts and younger researchers who use generating functions, algebraic and probabilistic methods as well as asymptotic analysis on a daily basis. Walks in the quarter-plane and random walks (quantum, rotor and self-avoiding), permutation tableaux, and random permutations are considered. In addition, articles in the volume pres...
Steven Finch provides 136 essays, each devoted to a mathematical constant or a class of constants, from the well known to the highly exotic. This book is helpful both to readers seeking information about a specific constant, and to readers who desire a panoramic view of all constants coming from a particular field, for example, combinatorial enumeration or geometric optimization. Unsolved problems appear virtually everywhere as well. This work represents an outstanding scholarly attempt to bring together all significant mathematical constants in one place.
This book presents a comprehensive review of a diverse range of subjects in physics written by physicists who have all been taught by or are associated with K C Hines. Ken Hines was a great mentor with far-reaching influence on his students who later went on to make outstanding contributions to physics in their careers. The papers provide significant insights into statistical physics, plasma physics from fluorescent lighting to quantum pair plasmas, cosmic ray physics, nuclear reactions, and many other fields. Sample Chapter(s). Chapter 1: Concerning Ken Hines... (358 KB). Contents: Resonant X-Ray Scattering and X-Ray Absorption: Closing the Circle? (Z Barnea et al.); The Screened Field of a Test Particle (R L Dewar); Aspects of Plasma Physics (R J Hosking); The Boltzmann Equation in Fluorescent Lamp Theory (G Lister); Pair Modes in Relativistic Quantum Plasmas (D B Melrose & J McOrist); Neutrons from the Galactic Centre (R R Volkas); Quaternions and Octonions in Nature (G C Joshi); Accretion onto the Supermassive Black Hole at the Centre of Our Galaxy (F Melia); and other papers. Readership: Academics and graduate students interested in physics.
This volumes provides a comprehensive review of interactions between differential geometry and theoretical physics, contributed by many leading scholars in these fields. The contributions promise to play an important role in promoting the developments in these exciting areas. Besides the plenary talks, the coverage includes: models and related topics in statistical physics; quantum fields, strings and M-theory; Yang-Mills fields, knot theory and related topics; K-theory, including index theory and non-commutative geometry; mirror symmetry, conformal and topological quantum field theory; development of integrable systems; and random matrix theory.
Reviewing statistical mechanics concepts for analysis of macromolecular structure formation processes, for graduate students and researchers in physics and biology.
This new expanded second edition has been totally revised and corrected. The reader finds two complete new chapters. One covers the exact solution of the finite temperature Schwinger model with periodic boundary conditions. This simple model supports instanton solutions – similarly as QCD – and allows for a detailed discussion of topological sectors in gauge theories, the anomaly-induced breaking of chiral symmetry and the intriguing role of fermionic zero modes. The other new chapter is devoted to interacting fermions at finite fermion density and finite temperature. Such low-dimensional models are used to describe long-energy properties of Dirac-type materials in condensed matter physi...
In the last two decades low-dimensional (low-d) physics has matured into a major branch of science. Quite generally we may define a system with restricted dimensionality d as an object that is infinite only in one or two spatial directions (d = 1 and 2). Such a definition comprises isolated single chains or layers, but also fibres and thin layers (films) of varying but finite thickness. Clearly, a multitude of physical phenomena, notably in solid state physics, fall into these categories. As examples, we may mention: • Magnetic chains or layers (thin-film technology). • Metallic films (homogeneous or heterogeneous, crystalline, amorphous or microcristalline, etc.). • I-d or 2-d conductors and superconductors. • Intercalated systems. • 2-d electron gases (electrons on helium, semiconductor interfaces). • Surface layer problems (2-d melting of monolayers of noble gases on a substrate, surface problems in general). • Superfluid films of ~He or 'He. • Polymer physics. • Organic and inorganic chain conductors, superionic conductors. • I-d or 2-d molecular crystals and liquid crystals. • I-d or 2-d ferro- and antiferro electrics.