You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
With contributions by numerous experts
This book is devoted to the problem of inelastic light scattering in semiconductors, i.e., to processes in which a photon impinges upon a serniconductor, creating or anihilating one or several quasi-particles, and then emerges with an energy somewhat different from that of the incident photon. In light scattering spectroscopy the incident photons are monochromatic; one measures the energy distribution of the scat tered photons with a spectrometer. Because of its monochromaticity, power, and collimation, lasers are ideal sources for light scattering spectroscopy. Consequently, developments in the field of light scattering have followed, in recent years, the developments in laser technology. T...
The Laser Spectroscopy Conference held at Vail, Colorado, June 25-29, 1973 was in certain ways the first meeting of its kind. Var ious quantum electronics conferences in the past have covered non linear optics, coherence theory, lasers and masers, breakdown, light scattering and so on. However, at Vail only two major themes were developed - tunable laser sources and the use of lasers in spectro scopic measurements, especially those involving high precision. Even so, Laser Spectroscopy covers a broad range of topics, making possible entirely new investigations and in older ones orders of magnitude improvement in resolution. The conference was interdisciplinary and international in char acter with scientists representing Japan, Italy, West Germany, Canada, Israel, France, England, and the United States. Of the 150 participants, the majority were physicists and electrical engineers in quantum electronics and the remainder, physical chemists and astrophysicists. We regret, because of space limitations, about 100 requests to attend had to be refused.
This book describes the processes of optical information recording in photorefractive crystals and applications of these materials in phase-conjugating devices, holographic interferometry, optical computers and sensors. It is in essence an extensive introduction to this new and rapidly developing area of quantum electronics. It presents physical concepts, fundamentals of theory, and important experimental data. A rigorous treatment of basic phenomena is accompanied by a quantitative analysis, which makes the book interesting to experts and accessible for newcomers to the field. Of particular interest to researchers is an extensive summary of basic physical and holographic parameters of all presently known photorefractive crystals and structures and also a detailed critical analysis of their applications.
This book has been prompted by our des ire to share with others our apprecia tion of the harmony and beauty in a particular sphere of modern optics known as "optical phase conjugation". Practical applications of the phase conjugated wave are likely to be far-reaching. Optical phase conjugation (OPC) combines in itself aesthetic and pragmatic attractiveness, a synthesis that has made OPC a subject of general attention. The figure presents the ap proximate rate of publications (number of articles per year) on OPC in the world literature for recent years, the lower curve denoting the work carried out in the USSR. The efforts of a large unofficial international collective have yielded an impress...
Scanning Electron Microscopy provides a description of the physics of electron-probe formation and of electron-specimen interactions. The different imaging and analytical modes using secondary and backscattered electrons, electron-beam-induced currents, X-ray and Auger electrons, electron channelling effects, and cathodoluminescence are discussed to evaluate specific contrasts and to obtain quantitative information.
This volume is based on papers presented at the International Symposium on X-Ray Microscopy held at Brookhaven National Laboratory, Upton NY, August 31-September 4, 1987. Previous recent symposia on the sub ject were held in New York in 1979, Gottingen in 1983 and Taipei in 1986. Developments in x-ray microscopy continue at a rapid pace, with im portant advances in all major areas: x-ray sources, optics and components, and microscopes and imaging systems. Taken as a whole, the work pre sented here emphasizes three major directions: (a) improvements in the capability and image-quality of x-ray microscopy, expressed principally in systems attached to large, high-brightness x-ray sources; (b) g...
It was a greatest pleasure for me to learn that Springer-Verlag wished to produce a second edition of my book. In this connection, Dr. H. Lotsch asked me to send hirn a list of misprints, mistakes, and inaccuracies that had been noticed in the first edition and to make corresponding corrections without disturbing the layout or the typo graphy too much. I accepted this opportunity with alacrity and, moreover, found some free places in the text where I was able to insert some concise, up-to-date information about new lasing compounds and stimulated emission channels. It was also possible to increase the number of reference citations. The reader of the second edition hence has access to more co...
Single-mode fibers are the most advanced means of transmitting information, since they provide extremely low attenuation and very high bandwidths. At present, long distance communication by single-mode fibers is cheaper than by conventional copper cables, and in the future single-mode fibers will also be used in the subscriber loop. Since single-mode fibers have many applications, a variety of people need to understand this modern transmission medium. How ever, waveguiding in single-mode fibers is much more difficult to understand than waveguiding in copper lines. A single-mode fiber is a dielectric waveguide operated at optical wave lengths. Since 1961, I have been involved in experimental ...
This monograph deals with diverse applications of holographic interferome try in experimental solid mechanics. Holographic interferometry has experienced a development of twenty years. It has enjoyed success and suffered some disappointments mainly due to early overestimation of its potential. At present, development of holo graphic interferometry is progressing primarily as a technique for quantita tive measurements. This is what motivated us to write this book - to ana lyze the quantitative methods of holographic interferometry. The fringe patterns obtained in holographic interferometry are graphi cally descriptive. In the general case, however, because they contain infor mation on the tot...