You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains the proceedings of the QMATH13: Mathematical Results in Quantum Physics conference, held from October 8–11, 2016, at the Georgia Institute of Technology, Atlanta, Georgia. In recent years, a number of new frontiers have opened in mathematical physics, such as many-body localization and Schrödinger operators on graphs. There has been progress in developing mathematical techniques as well, notably in renormalization group methods and the use of Lieb–Robinson bounds in various quantum models. The aim of this volume is to provide an overview of some of these developments. Topics include random Schrödinger operators, many-body fermionic systems, atomic systems, effective equations, and applications to quantum field theory. A number of articles are devoted to the very active area of Schrödinger operators on graphs and general spectral theory of Schrödinger operators. Some of the articles are expository and can be read by an advanced graduate student.
Welcome to "Age," where the line between reality and fiction fades, and the true essence of storytelling shines through. "Age" invites readers into a captivating world where espionage intertwines with speculative fiction, creating a narrative that goes beyond mere entertainment. Written by Justin Marshall, the novel introduces a world where secrets hold immense power and trust is a scarce commodity. At its core, "Age" is a spy thriller that transcends boundaries, offering a fresh perspective on familiar genre tropes. The book challenges readers to dig deep into its pages, encouraging them to embrace their imagination and embark on a journey filled with twists, turns, and unexpected revelations. As the plot unfolds, readers are drawn into a web of suspense and mystery, where every chapter unravels new layers of intrigue. "Age" by Justin Marshall invites readers to immerse themselves fully in a world brimming with espionage, adventure, and endless possibilities. It's a thrilling ride that promises to captivate and surprise readers at every turn.
This volume describes the current state of knowledge of random spatial processes, particularly those arising in physics. The emphasis is on survey articles which describe areas of current interest to probabilists and physicists working on the probability theory of phase transition. Special attention is given to topics deserving further research. The principal contributions by leading researchers concern the mathematical theory of random walk, interacting particle systems, percolation, Ising and Potts models, spin glasses, cellular automata, quantum spin systems, and metastability. The level of presentation and review is particularly suitable for postgraduate and postdoctoral workers in mathematics and physics, and for advanced specialists in the probability theory of spatial disorder and phase transition.
Paul R. Halmos, eminent mathematician, is also a snapshot addict. For the past 45 years, Halmos has snapped mathematicians, their spouses, their brothers and sisters and other relatives, their offices, their dogs, and their carillon towers. From 6000 or so photographs in his collection, Halmos chose about 600 for this book. The pictures are candid shots showing mathematicians just being themselves, and the accompanying captions, in addition to identifying the subjects, contain anecdotes and bits of history that reveal Halmos' inimitable wit and insight.
Comprehensive coverage of Woolf's reception across Europe with contributions from leading international critics and translators.
This book is based on the mini-workshop Renormalization, held in December 2006, and the conference Combinatorics and Physics, held in March 2007. Both meetings took place at the Max-Planck-Institut fur Mathematik in Bonn, Germany. Research papers in the volume provide an overview of applications of combinatorics to various problems, such as applications to Hopf algebras, techniques to renormalization problems in quantum field theory, as well as combinatorial problems appearing in the context of the numerical integration of dynamical systems, in noncommutative geometry and in quantum gravity. In addition, it contains several introductory notes on renormalization Hopf algebras, Wilsonian renormalization and motives.
This book collects selected papers written by invited and plenary speakers of the 15th International Congress on Mathematical Physics (ICMP) in the aftermath of the conference. In extensive review articles and expository texts as well as advanced research articles the world leading experts present the state of the art in modern mathematical physics. New mathematical concepts and ideas are introduced by prominent mathematicalphysicists and mathematicians, covering among others the fields of Dynamical Systems, Operator Algebras, Partial Differential Equations, Probability Theory, Random Matrices, Condensed Matter Physics, Statistical Mechanics, General Relativity, Quantum Mechanics, Quantum Field Theory, Quantum Information and String Theory. All together the contributions in this book give a panoramic view of the latest developments in mathematical physics. They will help readers with a general interest in mathematical physics to get an update on the most recent developments in their field, and give a broad overview on actual and future research directions in this fascinating and rapidly expanding area.
This volume contains the proceedings of the Fifth International Conference on Complex Analysis and Dynamical Systems, held from May 22-27, 2011, in Akko (Acre), Israel. The papers cover a wide variety of topics in complex analysis and partial differential
Topics include the complex plane, basic properties of analytic functions, analytic functions as mappings, analytic and harmonic functions in applications, transform methods. Hundreds of solved examples, exercises, applications. 1990 edition. Appendices.
Chaotic behavior of (even the simplest) iterations of polynomial maps of the complex plane was known for almost one hundred years due to the pioneering work of Farou, Julia, and their contemporaries. However, it was only twenty-five years ago that the first computer generated images illustrating properties of iterations of quadratic maps appeared. These images of the so-called Mandelbrot and Julia sets immediately resulted in a strong resurgence of interest in complex dynamics. The present volume, based on the talks at the conference commemorating the twenty-fifth anniversary of the appearance of Mandelbrot sets, provides a panorama of current research in this truly fascinating area of mathematics.