You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is the first to deal with the important topic of the fire behaviour of fibre reinforced polymer composite materials. The book covers all of the key issues on the behaviour of composites in a fire. Also covered are fire protection materials for composites, fire properties of nanocomposites, fire safety regulations and standards, fire test methods, and health hazards from burning composites.
The structural materials used in airframe and propulsion systems influence the cost, performance and safety of aircraft, and an understanding of the wide range of materials used and the issues surrounding them is essential for the student of aerospace engineering.Introduction to aerospace materials reviews the main structural and engine materials used in aircraft, helicopters and spacecraft in terms of their production, properties, performance and applications.The first three chapters of the book introduce the reader to the range of aerospace materials, focusing on recent developments and requirements. Following these introductory chapters, the book moves on to discuss the properties and pro...
Fibre reinforced polymer (FRP) composites are used in almost every type of advanced engineering structure, with their usage ranging from aircraft, helicopters and spacecraft through to boats, ships and offshore platforms and to automobiles, sports goods, chemical processing equipment and civil infrastructure such as bridges and buildlings. The usage of FRP composites continues to grow at an impessive rate as these materials are used more in their existing markets and become established in relatively new markets such as biomedical devices and civil structures. A key factor driving the increased applications of composites over the recent years is the development of new advanced forms of FRP materials. This includes developments in high performance resin systems and new styles of reinforcement, such as carbon nanotubes and nanoparticles. This book provides an up-to-date account of the fabrication, mechanical properties, delamination resistance, impact tolerance and applications of 3D FRP composites. The book focuses on 3D composites made using the textile technologies of weaving, braiding, knitting and stiching as well as by z-pinning.
None
None
New strategies on fillers, reinforcements, process modeling and SHM Discusses carbon fiber, ceramic, metal, and wood compositesApplications to wind turbines, aerospace, piping The tenth in an ongoing series, this large volume contains 44 papers published for the first time on the behavior, process modeling and testing of composites, written by well-known researchers from universities and research centers in Japan and Canada. Special attention is given to advances in reinforcements, manufacturing, and sensing methods for SHM of composite processes and damage. Key words include: braided composites, nanotube, graphene nanoplatelet, moisture effects, structural health, functionally graded shells, curvilinear composite, lignin, sensors, piezoelectric, and damage sensing.
Explosion Blast Response of Composites contains key information on the effects of explosions, shock waves, and detonation products (e.g. fragments, shrapnel) on the deformation and damage to composites. The book considers the blast response of laminates and sandwich composites, along with blast mitigation of composites (including coating systems and energy absorbing materials). Broken down under the following key themes: Introduction to explosive blast response of composites, Air explosion blast response of composites, Underwater explosion blast response of composites, and High strain rate and dynamic properties of composites, the book deals with an important and contemporary topic due to th...
This book aims to evaluate and improve the state of charge (SOC) and state of health (SOH) of automotive lithium-ion batteries. The authors first introduce the basic working principle and dynamic test characteristics of lithium-ion batteries. They present the dynamic transfer model, compare it with the traditional second-order reserve capacity (RC) model, and demonstrate the advantages of the proposed new model. In addition, they propose the chaotic firefly optimization algorithm and demonstrate its effectiveness in improving the accuracy of SOC and SOH estimation through theoretical and experimental analysis. The book will benefit researchers and engineers in the new energy industry and provide students of science and engineering with some innovative aspects of battery modeling.