You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This Brief puts together two subjects, quantum and variational calculi by considering variational problems involving Hahn quantum operators. The main advantage of its results is that they are able to deal with nondifferentiable (even discontinuous) functions, which are important in applications. Possible applications in economics are discussed. Economists model time as continuous or discrete. Although individual economic decisions are generally made at discrete time intervals, they may well be less than perfectly synchronized in ways discrete models postulate. On the other hand, the usual assumption that economic activity takes place continuously, is nothing else than a convenient abstractio...
This brief presents a general unifying perspective on the fractional calculus. It brings together results of several recent approaches in generalizing the least action principle and the Euler–Lagrange equations to include fractional derivatives. The dependence of Lagrangians on generalized fractional operators as well as on classical derivatives is considered along with still more general problems in which integer-order integrals are replaced by fractional integrals. General theorems are obtained for several types of variational problems for which recent results developed in the literature can be obtained as special cases. In particular, the authors offer necessary optimality conditions of...
This book provides an overview of some recent findings in the theory and applications of non-integer order systems. Discussing topics ranging from the mathematical foundations to technical applications of continuous-time and discrete-time fractional calculus, it includes 22 original research papers and is subdivided into four parts: • Mathematical Foundations • Approximation, Modeling and Simulations • Fractional Systems Analysis and Control • Applications The papers were selected from those presented at the 10th International Conference of Non-integer Order Calculus and its Applications, which was held at the Bialystok University of Technology, Poland, September 20–21, 2018. Thanks to the broad spectrum of topics covered, the book is suitable for researchers from applied mathematics and engineering. It is also a valuable resource for graduate students, as well as for scholars looking for new mathematical tools.
This book collects papers from the 8th Conference on Non-Integer Order Calculus and Its Applications that have been held on September 20-21, 2016 in Zakopane, Poland. The preceding two conferences were held in Szczecin, Poland in 2015, and in Opole, Poland, in 2014. This conference provides a platform for academic exchange on the theory and application of fractional calculus between domestic and international universities, research institutes, corporate experts and scholars. The Proceedings of the 8th Conference on Non-Integer Order Calculus and Its Applications 2016 brings together rigorously reviewed contributions from leading international experts. The included papers cover novel various important aspects of mathematical foundations of fractional calculus, modeling and control of fractional systems as well as controllability, detectability, observability and stability problems for this systems.
Fractional Dynamics and Control provides a comprehensive overview of recent advances in the areas of nonlinear dynamics, vibration and control with analytical, numerical, and experimental results. This book provides an overview of recent discoveries in fractional control, delves into fractional variational principles and differential equations, and applies advanced techniques in fractional calculus to solving complicated mathematical and physical problems.Finally, this book also discusses the role that fractional order modeling can play in complex systems for engineering and science.
This invaluable book provides a broad introduction to the fascinating and beautiful subject of Fractional Calculus of Variations (FCV). In 1996, FVC evolved in order to better describe non-conservative systems in mechanics. The inclusion of non-conservatism is extremely important from the point of view of applications. Forces that do not store energy are always present in real systems. They remove energy from the systems and, as a consequence, Noether's conservation laws cease to be valid. However, it is still possible to obtain the validity of Noether's principle using FCV. The new theory provides a more realistic approach to physics, allowing us to consider non-conservative systems in a na...
What is Mathematical Economics Within the field of economics, mathematical economics refers to the utilization of mathematical techniques for the purpose of representing ideas and analyzing situations. It is common for these applied methods to go beyond simple geometry. Some examples of these approaches include differential and integral calculus, difference and differential equations, matrix algebra, mathematical programming, and other computer methods. The individuals who advocate for this method assert that it makes it possible to formulate theoretical linkages in a manner that is rigorous, general, and straightforward. How you will benefit (I) Insights, and validations about the following...
This volume is devoted to presentation of new results of research on systems of non-integer order, called also fractional systems. Their analysis and practical implementation have been the object of spontaneous development for a few last decades. The fractional order models can depict a physical plant better than the classical integer order ones. This covers different research fields such as insulator properties, visco-elastic materials, electrodynamic, electrothermal, electrochemical, economic processes modelling etc. On the other hand fractional controllers often outperform their integer order counterparts. This volume contains new ideas and examples of implementation, theoretical and pure...
This volume contains the proceedings of the workshop on Variational and Optimal Control Problems on Unbounded Domains, held in memory of Arie Leizarowitz, from January 9-12, 2012, in Haifa, Israel. The workshop brought together a select group of worldwide experts in optimal control theory and the calculus of variations, working on problems on unbounded domains. The papers in this volume cover many different areas of optimal control and its applications. Topics include needle variations in infinite-horizon optimal control, Lyapunov stability with some extensions, small noise large time asymptotics for the normalized Feynman-Kac semigroup, linear-quadratic optimal control problems with state delays, time-optimal control of wafer stage positioning, second order optimality conditions in optimal control, state and time transformations of infinite horizon problems, turnpike properties of dynamic zero-sum games, and an infinite-horizon variational problem on an infinite strip. This book is co-published with Bar-Ilan University (Ramat-Gan, Israel).