You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Specialists in the technical components of a synchrotron light source are usually well versed in their field and in the associated technical literature. However, with the rapid and continuing growth of synchrotron radiation research, and with new facilities coming online and being authorized for design and construction around the world, there is a need for a reference book that describes the various technical components of a synchrotron light source in a manner that will be useful to those who lack specialized technical background, but who have responsibility for some part of the design, construction, operation or development of such a facility. This would include technicians, engineers and ...
This series, established in 1965, is concerned with recent developments in the general area of atomic, molecular, and optical physics. The field is in a state of rapid growth, as new experimental and theoretical techniques are used on many old and new problems. Topics covered also include related applied areas, such as atmospheric science, astrophysics, surface physics, and laser physics. Articles are written by distinguished experts who are active in their research fields. The articles contain both relevant review material as well as detailed descriptions of important recent developments.
Hybrid composites have exceptional features due to superior mechanical properties, fatigue/impact resistance, and balanced thermal distortion stability. This book covers the latest developments in the hybrid composite materials, processing, characterization, and modeling of materials behaviour. While covering the same, the book also provides insight on its applications in medical science.
Learn to assess electromigration reliability and design more resilient chips in this comprehensive and practical resource. Beginning with fundamental physics and building to advanced methodologies, this book enables the reader to develop highly reliable on-chip wiring stacks and power grids. Through a detailed review on the role of microstructure, interfaces and processing on electromigration reliability, as well as characterisation, testing and analysis, the book follows the development of on-chip interconnects from microscale to nanoscale. Practical modeling methodologies for statistical analysis, from simple 1D approximation to complex 3D description, can be used for step-by-step development of reliable on-chip wiring stacks and industrial-grade power/ground grids. This is an ideal resource for materials scientists and reliability and chip design engineers.
A diverse international set of authors discuss Artificial/Computational Sapience and Sapient Systems in this unique and useful volume. The reader is guided through the subject in a structured and comprehensive manner that begins with chapters discussing philosophical, historical, and semiotic ideas about what properties are expected from Sapient (Wise) systems. Following that, chapters describe mathematical and engineering views on sapience, relating these to philosophical, semiotic, cognitive, and neuro-biological perspectives.
It turned out to be really a rare and happy occasion that we know exact1y when and how a new branch of space physics was born, namely, a physics of solar cosmic rays. It happened on February 28 and March 7, 1942 when the fIrst "cosmic ray bursts" were recorded on the Earth, and the Sun was unambiguously identifIed for the fIrst time as the source of high-velocity 10 particles with energies up to > 10 eV. Just due to such a high energy these relativistic particles have been called "solar cosmic rays" (SCR), in distinction from the "true" cosmic rays of galactic origin. Between 1942 and the beginning ofthe space era in 1957 only extremely high energy solar particle events could be occasionally recorded by cosmic ray ground-Ievel detectors and balloon borne sensors. Since then the detection techniques varied considerably and the study of SCR turned into essential part of solar and solar-terrestrial physics.
Magnetic Nanoferrites and their Composites: Environmental and Biomedical Applications addresses recent developments in this important research field. The book covers the latest synthesis and fabrication techniques, properties, characterization and multifunctional biomedical and environmental applications. Chapters provide cutting-edge research while addressing the latest scenarios, recent developments, future aspects, and challenges and opportunities attributed to their excellent properties, including large surface-to-volume ratio, high chemical stability, low eddy losses, moderate values of saturation magnetization and coercivity, large adsorption, non-toxicity, bio-degradable and biocompat...