You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A comprehensive guide to carbon inside Earth - its quantities, movements, forms, origins, changes over time and impact on planetary processes. This title is also available as Open Access on Cambridge Core.
Over the past few decades, several approaches have been developed for designing nano-structured or molecularly-structured materials. These advances have revolutionized practically all fields of science and engineering, providing an additional design variable, the feature size of the nano-structures, which can be tailored to provide new materials with very special characteristics. Nanomaterials: Design and Simulation explores the role that such advances have made toward a rational design of nanostructures and covers a variety of methods from ab initio electronic structure techniques, ab initio molecular dynamics, to classical molecular dynamics, also being complemented by coarse-graining and ...
Nanocomposites with Carbon-based nanofillers (e.g., carbon nanotubes, graphene sheets and nanoribbons etc.) form a class of extremely promising materials for thermal applications. In addition to exceptional material properties, the thermal conductivity of the carbon-based nanofillers can be higher than any other known material, suggesting the possibility to engineer nanocomposites that are both lightweight and durable, and have unique thermal properties. This potential is hindered by thermal boundary resistance (TBR) to heat transfer at the interface between nanoinclusions and the matrix, and by the difficulty to control the dispersion pattern and the orientation of the nanoinclusions. Therm...
Clear evidence of increasing demands in the processing industry prompted the editors and authors to publish a new book about High Pressure Process Technology: Fundamentals and Applications.This book presents the latest knowledge regarding the high pressure processing aspects combined with that about the modeling, the design and the operation of safe and reliable high pressure plants and equipment. This treatment and selection of the subjects is stimulating and unique. Consisting of nine chapters, each subdivided into several sections, the book addresses the high pressure aspects, providing well selected correlated information connected with a comprehensive overview together with a large numb...
Surfactants are ubiquitous and have applications in diverse areas, including food, cosmetics, detergents, lubricants, enhanced oil recovery (EOR), and targeted drug delivery systems. Their wide diversity of applications owes to their unique structure, namely, a hydrophilic and a hydrophobic group present in the same molecule. Although most surfactants used industrially are synthetic, there is a growing need for natural surfactants, as the latter is obtainable from renewable sources and are less toxic and highly biodegradable in contrast to their synthetic counterparts. This book is a compilation of interesting articles by various experts that cover various applications of both synthetic and natural surfactants.
This thesis demonstrates how molecular modeling techniques can be used to gain significant insights into numerous applications that are increasingly attracting research interest because of their societal importance. It presents innovative ideas that, by altering the fundamental physical phenomena occurring at the solid/liquid interface, allow the fluid transport in nanochannels to be manipulated so as to improve the performance of the practical applications. The applications explicitly considered in this thesis are the design of drag-reducing and self-cleaning surfaces; water desalination; and shale gas exploration – all of which are, to some extent, governed by nanoscale fluid transport. Overall, this thesis is useful for students and researchers entering the field who wish to understand how molecular modeling can improve the performance in a wide range of applications.
The accessible compendium of polymers in carbon nanotubes (CNTs) Carbon nanotubes (CNTs)—extremely thin tubes only a few nanometers in diameter but able to attain lengths thousands of times greater—are prime candidates for use in the development of polymer composite materials. Bringing together thousands of disparate research works, Carbon Nanotube-Polymer Composites: Manufacture, Properties, and Applications covers CNT-polymers from synthesis to potential applications, presenting the basic science and engineering of this dynamic and complex area in an accessible, readable way. Designed to be of use to polymer scientists, engineers, chemists, physicists, and materials scientists, the boo...
This book will be of interest not only to physics scholars who are studying the theoretical aspects of quantum mechanics, electromagnetism, superconductivity and superfluidity, but also to the more general reader. It explores the action of biologically active substances and low-intensity physical factors in ultra-low doses on biological systems, particularly the action of medicinal remedies in ultra-low doses (homeopathy), influence of the color and form of ambient bodies, and the so-called Twin Correlation.
Exploring recent developments in the field, Coarse-Graining of Condensed Phase and Biomolecular Systems examines systematic ways of constructing coarse-grained representations for complex systems. It explains how this approach can be used in the simulation and modeling of condensed phase and biomolecular systems. Assembling some of the most influential, world-renowned researchers in the field, this book covers the latest developments in the coarse-grained molecular dynamics simulation and modeling of condensed phase and biomolecular systems. Each chapter focuses on specific examples of evolving coarse-graining methodologies and presents results for a variety of complex systems. The contributors discuss the minimalist, inversion, and multiscale approaches to coarse-graining, along with the emerging challenges of coarse-graining. They also connect atomic-level information with new coarse-grained representations of complex systems, such as lipid bilayers, proteins, peptides, and DNA.
Anisotropic Particle Assemblies: Synthesis, Assembly, Modeling, and Applications covers the synthesis, assembly, modeling, and applications of various types of anisotropic particles. Topics such as chemical synthesis and scalable fabrication of colloidal molecules, molecular mimetic self-assembly, directed assembly under external fields, theoretical and numerical multi-scale modeling, anisotropic materials with novel interfacial properties, and the applications of these topics in renewable energy, intelligent micro-machines, and biomedical fields are discussed in depth. Contributors to this book are internationally known experts who have been actively studying each of these subfields for man...