You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Quantum phenomena are explained through the language of diagrams, setting out an innovative visual method of presenting complex scientific theories. Focusing on physical intuition over mathematical formalism, and packed with exercises, this unique book is accessible to students and researchers across scientific disciplines, from undergraduate to Ph.D. level.
The unique features of the quantum world are explained in this book through the language of diagrams, setting out an innovative visual method for presenting complex theories. Requiring only basic mathematical literacy, this book employs a unique formalism that builds an intuitive understanding of quantum features while eliminating the need for complex calculations. This entirely diagrammatic presentation of quantum theory represents the culmination of ten years of research, uniting classical techniques in linear algebra and Hilbert spaces with cutting-edge developments in quantum computation and foundations. Written in an entertaining and user-friendly style and including more than one hundred exercises, this book is an ideal first course in quantum theory, foundations, and computation for students from undergraduate to PhD level, as well as an opportunity for researchers from a broad range of fields, from physics to biology, linguistics, and cognitive science, to discover a new set of tools for studying processes and interaction.
This volume is based on the 2008 Clifford Lectures on Information Flow in Physics, Geometry and Logic and Computation, held March 12-15, 2008, at Tulane University in New Orleans, Louisiana. The varying perspectives of the researchers are evident in the topics represented in the volume, including mathematics, computer science, quantum physics and classical and quantum information. A number of the articles address fundamental questions in quantum information and related topics in quantum physics, using abstract categorical and domain-theoretic models for quantum physics to reason about such systems and to model spacetime. Readers can expect to gain added insight into the notion of information flow and how it can be understood in many settings. They also can learn about new approaches to modeling quantum mechanics that provide simpler and more accessible explanations of quantum phenomena, which don't require the arcane aspects of Hilbert spaces and the cumbersome notation of bras and kets.
This book constitutes the proceedings of the 19th International Conference on Logic for Programming, Artificial Intelligence and Reasoning, LPAR-19, held in December 2013 in Stellenbosch, South Africa. The 44 regular papers and 8 tool descriptions and experimental papers included in this volume were carefully reviewed and selected from 152 submissions. The series of International Conferences on Logic for Programming, Artificial Intelligence and Reasoning (LPAR) is a forum where year after year, some of the most renowned researchers in the areas of logic, automated reasoning, computational logic, programming languages and their applications come to present cutting-edge results, to discuss advances in these fields and to exchange ideas in a scientifically emerging part of the world.
The two-volume set LNCS 6198 and LNCS 6199 constitutes the refereed proceedings of the 37th International Colloquium on Automata, Languages and Programming, ICALP 2010, held in Bordeaux, France, in July 2010. The 106 revised full papers (60 papers for track A, 30 for track B, and 16 for track C) presented together with 6 invited talks were carefully reviewed and selected from a total of 389 submissions. The papers are grouped in three major tracks on algorithms, complexity and games; on logic, semantics, automata, and theory of programming; as well as on foundations of networked computation: models, algorithms and information management. LNCS 6198 contains 60 contributions of track A selected from 222 submissions as well as 2 invited talks.
Categories for Quantum Theory: An Introduction lays foundations for an approach to quantum theory that uses category theory, a branch of pure mathematics. Prior knowledge of quantum information theory or category theory helps, but is not assumed, and basic linear algebra and group theory suffices.
This volume represents a collective effort to advance research on the perennial problem of matter and consciousness, body and mind. It contains contributions from the fields of philosophy, psychology, physiology, cosmology, and physics. However, its distinctive emphasis is on the key role of theology. The modern natural sciences historically arose as an attempt to read the second book of God—that is, the book of Nature. The contributors to this volume maintain that this orientation of early modern science was correct and that our contemporary understanding of matter and its link with the psychic world can only be plausibly advanced through an appeal to theology. Attempts to resolve the problem of consciousness without theological insights yield problematic reductions of mind to matter or vice versa. The authors maintain that a Christian theological understanding of creation and of humanity provides a framework for a more fruitful way forward in our interdisciplinary attempts to engage the issue.
This is the first volume on category theory for a broad philosophical readership. It is designed to show the interest and significance of category theory for a range of philosophical interests: mathematics, proof theory, computation, cognition, scientific modelling, physics, ontology, the structure of the world. Each chapter is written by either a category-theorist or a philosopher working in one of the represented areas, in an accessible waythat builds on the concepts that are already familiar to philosophers working in these areas.
This open access book constitutes the proceedings of the 25th International Conference on Foundations of Software Science and Computational Structures, FOSSACS 2022, which was held during April 4-6, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 23 regular papers presented in this volume were carefully reviewed and selected from 77 submissions. They deal with research on theories and methods to support the analysis, integration, synthesis, transformation, and verification of programs and software systems.
A comprehensive, cutting-edge, and highly readable textbook that makes category theory and monoidal category theory accessible to students across the sciences. Category theory is a powerful framework that began in mathematics but has since expanded to encompass several areas of computing and science, with broad applications in many fields. In this comprehensive text, Noson Yanofsky makes category theory accessible to those without a background in advanced mathematics. Monoidal Category Theorydemonstrates the expansive uses of categories, and in particular monoidal categories, throughout the sciences. The textbook starts from the basics of category theory and progresses to cutting edge resear...