You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A low-dimensional magnet is a key to the next generation of electronic devices. In some respects, low-dimensional magnets refer to nanomagnets (nanostructured magnets) or single-molecule magnets (molecular nanomagnets). They also include the group of magnetic nanoparticles, which have been widely used in biomedicine, technology, industries, and environmental remediation. Low-dimensional magnetic materials can be used effectively in the future in powerful computers (hard drives, magnetic random-access memory, ultra-low power consumption switches, etc.). The properties of these materials largely depend on the doping level, phase, defects, and morphology. This book covers various nanomagnets an...
This book presents selected papers from the fourth edition of the GraphX conference series, GraphITA 2015. Its content range from fundamentals to applications of graphene and other 2D material such as silicene, BN and MoS2. The newest technological challenges in the field are described in this book, written by worldwide known scientists working with 2D materials.The chapter 'Morphing Graphene-Based Systems for Applications: Perspectives from Simulations' is published open access under a CC BY 4.0 license.
This reference text discusses recent advances in the field of nanotechnology with applications in the fields of electronics sector, agriculture, health services, smart cities, food industry, and energy sector in a comprehensive manner. The text begins by discussing important concepts including bio nanotechnology, nano electronics, nano devices, nano medicine, and nano memories. It then comprehensively covers applications of nanotechnology in different areas including healthcare, energy sector, environment, security and defense, agriculture sector, food industry, automotive sector, smart cities, and Internet of Things (IoT). Aimed at senior undergraduate, graduate students and professionals in the fields of electrical engineering, electronics engineering, nanoscience and nanotechnology, this text: Discusses nano image sensors useful for imaging in medical and for security applications. Covers advances in the field of nanotechnology with their applications. It covers important concepts including neuro simulators, nano medicine, and nano materials. Covers applications of nanotechnology in diverse fields including health sector, agriculture, energy sector, and electronics.
Low-dimensional magnetic materials find their wide applications in many areas, including spintronics, memory devices, catalysis, biomedical, sensors, electromagnetic shielding, aerospace, and energy. This book provides a comprehensive discussion on magnetic nanomaterials for emerging applications. Fundamentals along with applications of low-dimensional magnetic materials in spintronics, catalysis, memory, biomedicals, toxic waste removal, aerospace, telecommunications, batteries, supercapacitors, flexible electronics, and many more are covered in detail to provide a full spectrum of their advanced applications. This book offers fresh aspects of nanomagnetic materials and innovative directions to scientists, researchers, and students. It will be of particular interest to materials scientists, engineers, physicists, chemists, and researchers in electronic and spintronic industries, and is suitable as a textbook for undergraduate and graduate studies.
What Is Silicene Silicene is a two-dimensional allotrope of silicon, with a hexagonal honeycomb structure similar to that of graphene. Contrary to graphene, silicene is not flat, but has a periodically buckled topology; the coupling between layers in silicene is much stronger than in multilayered graphene; and the oxidized form of silicene, 2D silica, has a very different chemical structure from graphene oxide. How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Silicene Chapter 2: 2D silica Chapter 3: Borophene Chapter 4: Germanene Chapter 5: Stanene Chapter 6: Plumbene Chapter 7: Allotropy Chapter 8: Silicon Chapter 9: Graphite oxide (II) Answering the public top questions about silicene. (III) Real world examples for the usage of silicene in many fields. (IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of silicene' technologies. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of silicene.
Abstracts for presentations at the CMOSETR 2015 conference, May 20-22, 2015.
Presentation slides for the Materials track at CMOSETR 2015, May 20-22, 2015.
Major developments in the semiconductor industry are on the horizon through the use of two-dimensional (2D) materials, such as graphene and transition metal dichalcogenides, for integrated circuits (ICs). 2D Materials for Nanoelectronics is the first comprehensive treatment of these materials and their applications in nanoelectronic devices.Compris
This book discusses the processing and properties of silicene, including the historical and theoretical background of silicene, theoretical predictions, the synthesis and experimental properties of silicene and the potential applications and further developments. It also presents other similar monolayer materials, like germanene and phosphorene. Silicene, a new silicon allotrope with a graphene-like, honeycomb structure, has recently attracted considerable interest, because its topology affords it the same remarkable electronic properties as those of graphene. Additionally, silicene may have the potential advantage of being easily integrated in current Si-based nano/micro-electronics, offering novel technological applications. Silicene was theoretically conjectured a few years ago as a stand-alone material. However, it does not exist in nature and had to be synthesized on a substrate. It has since been successfully synthesized and multi-layer silicene structures are already being discussed. Within just a few years, silicene is now on the brink of technological applications in electronic devices.