You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This monograph summarizes and extends a number of results on the topology of trigonal curves in geometrically ruled surfaces. An emphasis is given to various applications of the theory to a few related areas, most notably singular plane curves of small degree, elliptic surfaces, and Lefschetz fibrations (both complex and real), and Hurwitz equivalence of braid monodromy factorizations. The approach relies on a close relation between trigonal curves/elliptic surfaces, a certain class of ribbon graphs, and subgroups of the modular group, which provides a combinatorial framework for the study of geometric objects. A brief summary of the necessary auxiliary results and techniques used and a background of the principal problems dealt with are included in the text. The book is intended to researchers and graduate students in the field of topology of complex and real algebraic varieties.
The articles in this volume are invited papers from the Marcus Wallenberg symposium and focus on research topics that bridge the gap between analysis, geometry, and topology. The encounters between these three fields are widespread and often provide impetus for major breakthroughs in applications. Topics include new developments in low dimensional topology related to invariants of links and three and four manifolds; Perelman's spectacular proof of the Poincare conjecture; and the recent advances made in algebraic, complex, symplectic, and tropical geometry.
This volume contains invited expository and research papers from the conference Topology of Algebraic Varieties, in honour of Anatoly Libgober's 60th birthday, held June 22-26, 2009, in Jaca, Spain.
New Ebook And paperback book: A ROAD OF FIRE : THE HAVANA SYNDROME, LIBYAN PRESIDENTIAL ELECTION 2021, OIL AND GAS – THE ENERGY CRISIS IN RUSSIA, USA AND EUROPE CIA , INTELLIGENCE, PANDEMIC, ELECTIONS, MONEY – CLAIRVOYANT/ PSYCHIC WORLD PREDICTIONS 2021 – 2022 AUTHORS : DIMITRINKA STAIKOVA, STOYANKA STAIKOVA, IVELINA STAIKOVA PUBLISHED : OCTOBER 19, 2021 Buy the Paperback Book from Amazon : https://www.amazon.com/dp/B09JVFF5YD
Cubic hypersurfaces are described by almost the simplest possible polynomial equations, yet their behaviour is rich enough to demonstrate many of the central challenges in algebraic geometry. With exercises and detailed references to the wider literature, this thorough text introduces cubic hypersurfaces and all the techniques needed to study them. The book starts by laying the foundations for the study of cubic hypersurfaces and of many other algebraic varieties, covering cohomology and Hodge theory of hypersurfaces, moduli spaces of those and Fano varieties of linear subspaces contained in hypersurfaces. The next three chapters examine the general machinery applied to cubic hypersurfaces of dimension two, three, and four. Finally, the author looks at cubic hypersurfaces from a categorical point of view and describes motivic features. Based on the author's lecture courses, this is an ideal text for graduate students as well as an invaluable reference for researchers in algebraic geometry.
Vladimir Abramovich Rokhlin (8/23/1919–12/03/1984) was one of the leading Russian mathematicians of the second part of the twentieth century. His main achievements were in algebraic topology, real algebraic geometry, and ergodic theory. The volume contains the proceedings of the Conference on Topology, Geometry, and Dynamics: V. A. Rokhlin-100, held from August 19–23, 2019, at The Euler International Mathematics Institute and the Steklov Institute of Mathematics, St. Petersburg, Russia. The articles deal with topology of manifolds, theory of cobordisms, knot theory, geometry of real algebraic manifolds and dynamical systems and related topics. The book also contains Rokhlin's biography supplemented with copies of actual very interesting documents.
This is the second volume of the Handbook of the Geometry and Topology of Singularities, a series which aims to provide an accessible account of the state-of-the-art of the subject, its frontiers, and its interactions with other areas of research. This volume consists of ten chapters which provide an in-depth and reader-friendly survey of some of the foundational aspects of singularity theory and related topics. Singularities are ubiquitous in mathematics and science in general. Singularity theory interacts energetically with the rest of mathematics, acting as a crucible where different types of mathematical problems interact, surprising connections are born and simple questions lead to ideas which resonate in other parts of the subject, and in other subjects. Authored by world experts, the various contributions deal with both classical material and modern developments, covering a wide range of topics which are linked to each other in fundamental ways. The book is addressed to graduate students and newcomers to the theory, as well as to specialists who can use it as a guidebook.
This volume contains the proceedings of the conference Automorphic Forms and Related Geometry: Assessing the Legacy of I.I. Piatetski-Shapiro, held from April 23-27, 2012, at Yale University, New Haven, CT. Ilya I. Piatetski-Shapiro, who passed away on 21 February 2009, was a leading figure in the theory of automorphic forms. The conference attempted both to summarize and consolidate the progress that was made during Piatetski-Shapiro's lifetime by him and a substantial group of his co-workers, and to promote future work by identifying fruitful directions of further investigation. It was organized around several themes that reflected Piatetski-Shapiro's main foci of work and that have promis...
The book offers an extensive study on the convoluted history of the research of algebraic surfaces, focusing for the first time on one of its characterizing curves: the branch curve. Starting with separate beginnings during the 19th century with descriptive geometry as well as knot theory, the book focuses on the 20th century, covering the rise of the Italian school of algebraic geometry between the 1900s till the 1930s (with Federigo Enriques, Oscar Zariski and Beniamino Segre, among others), the decline of its classical approach during the 1940s and the 1950s (with Oscar Chisini and his students), and the emergence of new approaches with Boris Moishezon’s program of braid monodromy facto...
None