You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Recently there has been a revival of interest in structuralist approaches to science. Taking their lead from scientific structuralists such as Henri Poincaré, Ernst Cassirer, and Bertrand Russell, some contemporary philosophers and scientists have argued that the most fruitful approach to solving many problems in the philosophy of science lies in focusing on the structural features of our scientific theories. Much of the work in scientific structuralism to date has been focused on the problem of scientific realism, where it has been argued that even in cases of radical theory change the most important structural features of predecessor theories are preserved. These structural realists argue...
Recent work in quantum information science has produced a revolution in our understanding of quantum entanglement. Scientists now view entanglement as a physical resource with many important applications. These range from quantum computers, which would be able to compute exponentially faster than classical computers, to quantum cryptographic techniques, which could provide unbreakable codes for the transfer of secret information over public channels. These important advances in the study of quantum entanglement and information touch on deep foundational issues in both physics and philosophy. This interdisciplinary volume brings together fourteen of the world's leading physicists and philosophers of physics to address the most important developments and debates in this exciting area of research. It offers a broad spectrum of approaches to resolving deep foundational challenges - philosophical, mathematical, and physical - raised by quantum information, quantum processing, and entanglement. This book is ideal for historians, philosophers of science and physicists.
Chapters “Turing and Free Will: A New Take on an Old Debate” and “Turing and the History of Computer Music” are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
The surprising history of the scientific method—from an evolutionary account of thinking to a simple set of steps—and the rise of psychology in the nineteenth century. The idea of a single scientific method, shared across specialties and teachable to ten-year-olds, is just over a hundred years old. For centuries prior, science had meant a kind of knowledge, made from facts gathered through direct observation or deduced from first principles. But during the nineteenth century, science came to mean something else: a way of thinking. The Scientific Method tells the story of how this approach took hold in laboratories, the field, and eventually classrooms, where science was once taught as a ...
In 1962, the publication of Thomas Kuhn’s Structure ‘revolutionized’ the way one conducts philosophical and historical studies of science. Through the introduction of both memorable and controversial notions, such as paradigms, scientific revolutions, and incommensurability, Kuhn argued against the traditionally accepted notion of scientific change as a progression towards the truth about nature, and instead substituted the idea that science is a puzzle solving activity, operating under paradigms, which become discarded after it fails to respond accordingly to anomalous challenges and a rival paradigm. Kuhn’s Structure has sold over 1.4 million copies and the Times Literary Supplement named it one of the “Hundred Most Influential Books since the Second World War.” Now, fifty years after this groundbreaking work was published, this volume offers a timely reappraisal of the legacy of Kuhn’s book and an investigation into what Structure offers philosophical, historical, and sociological studies of science in the future.
A new presentation of quantum theory and quantum information based on fundamental principles, for anyone seeking a deeper understanding of the subject.
Quantum theory explains a hugely diverse array of phenomena in the history of science. But how can the world be the way quantum theory says it is? Fifteen expert scholars consider what the world is like according to quantum physics in this volume and offer illuminating new perspectives on fundamental debates that span physics and philosophy.
"What does it mean to be a realist about science if one takes seriously the view that scientific knowledge is always perspectival, namely historically and culturally situated? In this book, Michela Massimi articulates an original answer to this question. The book begins with an exploration of how scientific communities often resort to several models and a plurality of practices in some areas of inquiry, drawing on examples from nuclear physics, climate science, and developmental psychology. Taking this plurality in science as a starting point, Massimi explains the perspectival nature of scientific representation, the role of scientific models as inferential blueprints, and the variety of sci...
Science is the study of our world, as it is in its messy reality. Nonetheless, science requires idealization to function—if we are to attempt to understand the world, we have to find ways to reduce its complexity. Idealization and the Aims of Science shows just how crucial idealization is to science and why it matters. Beginning with the acknowledgment of our status as limited human agents trying to make sense of an exceedingly complex world, Angela Potochnik moves on to explain how science aims to depict and make use of causal patterns—a project that makes essential use of idealization. She offers case studies from a number of branches of science to demonstrate the ubiquity of idealization, shows how causal patterns are used to develop scientific explanations, and describes how the necessarily imperfect connection between science and truth leads to researchers’ values influencing their findings. The resulting book is a tour de force, a synthesis of the study of idealization that also offers countless new insights and avenues for future exploration.
Recent work in quantum information science has produced a revolution in our understanding of quantum entanglement. Scientists now view entanglement as a physical resource with many important applications. These range from quantum computers, which would be able to compute exponentially faster than classical computers, to quantum cryptographic techniques, which could provide unbreakable codes for the transfer of secret information over public channels. These important advances in the study of quantum entanglement and information touch on deep foundational issues in both physics and philosophy. This interdisciplinary volume brings together fourteen of the world's leading physicists and philosophers of physics to address the most important developments and debates in this exciting area of research. It offers a broad spectrum of approaches to resolving deep foundational challenges - philosophical, mathematical, and physical - raised by quantum information, quantum processing, and entanglement. This book is ideal for historians, philosophers of science and physicists.