You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Celebrating the work of Professor W. Kuperberg, this reference explores packing and covering theory, tilings, combinatorial and computational geometry, and convexity, featuring an extensive collection of problems compiled at the Discrete Geometry Special Session of the American Mathematical Society in New Orleans, Louisiana. Discrete Geometry analyzes packings and coverings with congruent convex bodies , arrangements on the sphere, line transversals, Euclidean and spherical tilings, geometric graphs, polygons and polyhedra, and fixing systems for convex figures. This text also offers research and contributions from more than 50 esteemed international authorities, making it a valuable addition to any mathematical library.
This book is the result of a 25-year-old project and comprises a collection of more than 500 attractive open problems in the field. The largely self-contained chapters provide a broad overview of discrete geometry, along with historical details and the most important partial results related to these problems. This book is intended as a source book for both professional mathematicians and graduate students who love beautiful mathematical questions, are willing to spend sleepless nights thinking about them, and who would like to get involved in mathematical research.
This book constitutes the refereed proceedings of the 23rd Annual Symposium on Theoretical Aspects of Computer Science, held in February 2006. The 54 revised full papers presented together with three invited papers were carefully reviewed and selected from 283 submissions. The papers address the whole range of theoretical computer science including algorithms and data structures, automata and formal languages, complexity theory, semantics, and logic in computer science.
This 2005 book deals with interest topics in Discrete and Algorithmic aspects of Geometry.
Written by an expert on the topic and experienced lecturer, this textbook provides an elegant, self-contained introduction to functional analysis, including several advanced topics and applications to harmonic analysis. Starting from basic topics before proceeding to more advanced material, the book covers measure and integration theory, classical Banach and Hilbert space theory, spectral theory for bounded operators, fixed point theory, Schauder bases, the Riesz-Thorin interpolation theorem for operators, as well as topics in duality and convexity theory. Aimed at advanced undergraduate and graduate students, this book is suitable for both introductory and more advanced courses in functional analysis. Including over 1500 exercises of varying difficulty and various motivational and historical remarks, the book can be used for self-study and alongside lecture courses.
The Kepler conjecture, one of geometry's oldest unsolved problems, was formulated in 1611 by Johannes Kepler and mentioned by Hilbert in his famous 1900 problem list. The Kepler conjecture states that the densest packing of three-dimensional Euclidean space by equal spheres is attained by the “cannonball" packing. In a landmark result, this was proved by Thomas C. Hales and Samuel P. Ferguson, using an analytic argument completed with extensive use of computers. This book centers around six papers, presenting the detailed proof of the Kepler conjecture given by Hales and Ferguson, published in 2006 in a special issue of Discrete & Computational Geometry. Further supporting material is also presented: a follow-up paper of Hales et al (2010) revising the proof, and describing progress towards a formal proof of the Kepler conjecture. For historical reasons, this book also includes two early papers of Hales that indicate his original approach to the conjecture. The editor's two introductory chapters situate the conjecture in a broader historical and mathematical context. These chapters provide a valuable perspective and are a key feature of this work.
A compilation of 380 of SIAM Review's most interesting problems dating back to the journal's inception in 1959.