You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A description of the global properties of simply-connected spaces that are non-positively curved in the sense of A. D. Alexandrov, and the structure of groups which act on such spaces by isometries. The theory of these objects is developed in a manner accessible to anyone familiar with the rudiments of topology and group theory: non-trivial theorems are proved by concatenating elementary geometric arguments, and many examples are given. Part I provides an introduction to the geometry of geodesic spaces, while Part II develops the basic theory of spaces with upper curvature bounds. More specialized topics, such as complexes of groups, are covered in Part III.
A brief portrait of the life and work of Professor Enrique Vidal Abascal / L.A. Cordero -- pt. A. Foliation theory. Characteristic classes for Riemannian foliations / S. Hurder. Non unique-ergodicity of harmonic measures: Smoothing Samuel Petite's examples / B, Deroin. On the uniform simplicity of diffeomorphism groups / T. Tsuboi. On Bennequin's isotopy lemma and Thurston's inequality / Y. Mitsumatsu. On the Julia sets of complex codimension-one transversally holomorphic foliations / T. Asuke. Singular Riemannian foliations on spaces without conjugate points / A. Lytchak. Variational formulae for the total mean curvatures of a codimension-one distribution / V. Rovenski and P. Walczak. On a ...
Presents the proceedings of the conference on Foliations, Geometry, and Topology, held August 6-10, 2007, in Rio de Janeiro, Brazil, in honor of the 70th birthday of Paul Schweitzer. The papers focus on the theory of foliations and related areas such as dynamical systems, group actions on low dimensional manifolds, and geometry of hypersurfaces.
This volume presents the proceedings of the conference held in honor of J. Michael Boardman's 60th birthday. It brings into print his classic work on conditionally convergent spectral sequences. Over the past 30 years, it has become evident that some of the deepest questions in algebra are best understood against the background of homotopy theory. Boardman and Vogt's theory of homotopy-theoretic algebraic structures and the theory of spectra, for example, were two benchmark breakthroughs underlying the development of algebraic $K$-theory and the recent advances in the theory of motives. The volume begins with short notes by Mac Lane, May, Stasheff, and others on the early and recent history ...
A. Banyaga: On the group of diffeomorphisms preserving an exact symplectic.- G.A. Fredricks: Some remarks on Cauchy-Riemann structures.- A. Haefliger: Differentiable Cohomology.- J.N. Mather: On the homology of Haefliger’s classifying space.- P. Michor: Manifolds of differentiable maps.- V. Poenaru: Some remarks on low-dimensional topology and immersion theory.- F. Sergeraert: La classe de cobordisme des feuilletages de Reeb de S3 est nulle.- G. Wallet: Invariant de Godbillon-Vey et difféomorphismes commutants.
Twentieth-century China has been caught between a desire to increase its wealth and power in line with other advanced nations, which, by implication, means copying their institutions, practices and values, whilst simultaneously seeking to preserve China’s independence and historically formed identity. Over time, Chinese philosophers, writers, artists and politicians have all sought to reconcile these goals and this book shows how this search for a Chinese way penetrated even the most central, least contested area of modernity: science. Reviving Ancient Chinese Mathematics is a study of the life of one of modern China’s most admired scientific figures, the mathematician Wu Wen-Tsun. Negot...
The articles in this volume are an outgrowth of a colloquium "Systemes Integrables et Feuilletages," which was held in honor of the sixtieth birthday of Pierre Molino. The topics cover the broad range of mathematical areas which were of keen interest to Molino, namely, integral systems and more generally symplectic geometry and Poisson structures, foliations and Lie transverse structures, transitive structures, and classification problems.
Alexandrov spaces are defined via axioms similar to those of the Euclid axioms but where certain equalities are replaced with inequalities. Depending on the signs of the inequalities, we obtain Alexandrov spaces with curvature bounded above (CBA) and curvature bounded below (CBB). Even though the definitions of the two classes of spaces are similar, their properties and known applications are quite different. The goal of this book is to give a comprehensive exposition of the structure theory of Alexandrov spaces with curvature bounded above and below. It includes all the basic material as well as selected topics inspired by considering Alexandrov spaces with CBA and with CBB simultaneously. The book also includes an extensive problem list with solutions indicated for every problem.
This is a monograph on fixed point theory, covering the purely metric aspects of the theory–particularly results that do not depend on any algebraic structure of the underlying space. Traditionally, a large body of metric fixed point theory has been couched in a functional analytic framework. This aspect of the theory has been written about extensively. There are four classical fixed point theorems against which metric extensions are usually checked. These are, respectively, the Banach contraction mapping principal, Nadler’s well known set-valued extension of that theorem, the extension of Banach’s theorem to nonexpansive mappings, and Caristi’s theorem. These comparisons form a sign...