You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Data is at the center of many challenges in system design today. Difficult issues need to be figured out, such as scalability, consistency, reliability, efficiency, and maintainability. In addition, we have an overwhelming variety of tools, including relational databases, NoSQL datastores, stream or batch processors, and message brokers. What are the right choices for your application? How do you make sense of all these buzzwords? In this practical and comprehensive guide, author Martin Kleppmann helps you navigate this diverse landscape by examining the pros and cons of various technologies for processing and storing data. Software keeps changing, but the fundamental principles remain the s...
This two volume set LNCS 10177 and 10178 constitutes the refereed proceedings of the 22nd International Conference on Database Systems for Advanced Applications, DASFAA 2017, held in Suzhou, China, in March 2017. The 73 full papers, 9 industry papers, 4 demo papers and 3 tutorials were carefully selected from a total of 300 submissions. The papers are organized around the following topics: semantic web and knowledge management; indexing and distributed systems; network embedding; trajectory and time series data processing; data mining; query processing and optimization; text mining; recommendation; security, privacy, senor and cloud; social network analytics; map matching and spatial keywords; query processing and optimization; search and information retrieval; string and sequence processing; stream date processing; graph and network data processing; spatial databases; real time data processing; big data; social networks and graphs.
This book is a gentle introduction to dominance-based query processing techniques and their applications. The book aims to present fundamental as well as some advanced issues in the area in a precise, but easy-to-follow, manner. Dominance is an intuitive concept that can be used in many different ways in diverse application domains. The concept of dominance is based on the values of the attributes of each object. An object dominates another object if is better than . This goodness criterion may differ from one user to another. However, all decisions boil down to the minimization or maximization of attribute values. In this book, we will explore algorithms and applications related to dominance-based query processing. The concept of dominance has a long history in finance and multi-criteria optimization. However, the introduction of the concept to the database community in 2001 inspired many researchers to contribute to the area. Therefore, many algorithmic techniques have been proposed for the efficient processing of dominance-based queries, such as skyline queries, -dominant queries, and top- dominating queries, just to name a few.
A Patterns Approach to Designing Distributed Systems and Solving Common Implementation Problems More and more enterprises today are dependent on cloud services from providers like AWS, Microsoft Azure, and GCP. They also use products, such as Kafka and Kubernetes, or databases, such as YugabyteDB, Cassandra, MongoDB, and Neo4j, that are distributed by nature. Because these distributed systems are inherently stateful systems, enterprise architects and developers need to be prepared for all the things that can and will go wrong when data is stored on multiple servers--from process crashes to network delays and unsynchronized clocks. Patterns of Distributed Systems describes a set of patterns t...
This book brings together leading experts from around the world to explore the transformative potential of Machine Learning (ML) and the Internet of Things (IoT) in healthcare. It provides a platform for studying a future where healthcare becomes more precise, personalized, and accessible for all. The book covers recent advancements that will shape the future of healthcare and how artificial intelligence is revolutionizing disease detection, from analyzing chest X-rays for pneumonia to solving the secrets of our genes. It investigates the transformative potential of smart devices, real-time analysis of heart data, and personalized treatment plan creation. It shows how ML and IoT work and presents real-world examples of how they are leading to earlier and more accurate diagnoses and personalized treatments. Therefore, this edited book will be an invaluable resource for researchers, healthcare professionals, data scientists, or simply someone passionate about the future of healthcare. Readers will discover the exciting possibilities that lie ahead at the crossroads of ML, IoT, and health informatics.
An in-depth overview of an emerging field that brings together high-performance computing, big data processing, and deep lLearning. Over the last decade, the exponential explosion of data known as big data has changed the way we understand and harness the power of data. The emerging field of high-performance big data computing, which brings together high-performance computing (HPC), big data processing, and deep learning, aims to meet the challenges posed by large-scale data processing. This book offers an in-depth overview of high-performance big data computing and the associated technical issues, approaches, and solutions. The book covers basic concepts and necessary background knowledge, ...
Cloud computing has emerged as a successful paradigm of service-oriented computing and has revolutionized the way computing infrastructure is used. This success has seen a proliferation in the number of applications that are being deployed in various cloud platforms. There has also been an increase in the scale of the data generated as well as consumed by such applications. Scalable database management systems form a critical part of the cloud infrastructure. The attempt to address the challenges posed by the management of big data has led to a plethora of systems. This book aims to clarify some of the important concepts in the design space of scalable data management in cloud computing infr...
Entity Resolution (ER) lies at the core of data integration and cleaning and, thus, a bulk of the research examines ways for improving its effectiveness and time efficiency. The initial ER methods primarily target Veracity in the context of structured (relational) data that are described by a schema of well-known quality and meaning. To achieve high effectiveness, they leverage schema, expert, and/or external knowledge. Part of these methods are extended to address Volume, processing large datasets through multi-core or massive parallelization approaches, such as the MapReduce paradigm. However, these early schema-based approaches are inapplicable to Web Data, which abound in voluminous, noi...