You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Szemerédi's influence on today's mathematics, especially in combinatorics, additive number theory, and theoretical computer science, is enormous. This volume is a celebration of Szemerédi's achievements and personality, on the occasion of his seventieth birthday. It exemplifies his extraordinary vision and unique way of thinking. A number of colleagues and friends, all top authorities in their fields, have contributed their latest research papers to this volume. The topics include extension and applications of the regularity lemma, the existence of k-term arithmetic progressions in various subsets of the integers, extremal problems in hypergraphs theory, and random graphs, all of them beautiful, Szemerédi type mathematics. It also contains published accounts of the first two, very original and highly successful Polymath projects, one led by Tim Gowers and the other by Terry Tao.
From social networks such as Facebook, the World Wide Web and the Internet, to the complex interactions between proteins in the cells of our bodies, we constantly face the challenge of understanding the structure and development of networks. The theory of random graphs provides a framework for this understanding, and in this book the authors give a gentle introduction to the basic tools for understanding and applying the theory. Part I includes sufficient material, including exercises, for a one semester course at the advanced undergraduate or beginning graduate level. The reader is then well prepared for the more advanced topics in Parts II and III. A final part provides a quick introduction to the background material needed. All those interested in discrete mathematics, computer science or applied probability and their applications will find this an ideal introduction to the subject.
We show that every first-order property of graphs can be decided in almost linear time on every nowhere dense class of graphs. For graph classes closed under taking subgraphs, our result is optimal (under a standard complexity theoretic assumption): it was known before that for all classes C of graphs closed under taking subgraphs, if deciding first-order properties of graphs in C is fixed-parameter tractable, parameterized by the length of the input formula, then C must be nowhere dense. Nowhere dense graph classes form a large variety of classes of sparse graphs including the class of planar graphs, actually all classes with excluded minors, and also bounded degree graphs and graph classes...
An in-depth account of graph theory, written for serious students of mathematics and computer science. It reflects the current state of the subject and emphasises connections with other branches of pure mathematics. Recognising that graph theory is one of several courses competing for the attention of a student, the book contains extensive descriptive passages designed to convey the flavour of the subject and to arouse interest. In addition to a modern treatment of the classical areas of graph theory, the book presents a detailed account of newer topics, including Szemerédis Regularity Lemma and its use, Shelahs extension of the Hales-Jewett Theorem, the precise nature of the phase transition in a random graph process, the connection between electrical networks and random walks on graphs, and the Tutte polynomial and its cousins in knot theory. Moreover, the book contains over 600 well thought-out exercises: although some are straightforward, most are substantial, and some will stretch even the most able reader.
In 1992, when Paul Erdos was awarded a Doctor Honoris Causa by Charles University in Prague, a small conference was held, bringing together a distin guished group of researchers with interests spanning a variety of fields related to Erdos' own work. At that gathering, the idea occurred to several of us that it might be quite appropriate at this point in Erdos' career to solicit a col lection of articles illustrating various aspects of Erdos' mathematical life and work. The response to our solicitation was immediate and overwhelming, and these volumes are the result. Regarding the organization, we found it convenient to arrange the papers into six chapters, each mirroring Erdos' holistic appr...
Problems in extremal graph theory have traditionally been tackled by ingenious methods which made use of the structure of extremal graphs. In this book, an update of his 1978 book Extremal Graph Theory, the author focuses on a trend towards probabilistic methods. He demonstrates both the direct use of probability theory and, more importantly, the fruitful adoption of a probabilistic frame of mind when tackling main line extremal problems. Essentially self-contained, the book doesnot merely catalog results, but rather includes considerable discussion on a few of the deeper results. The author addresses pure mathematicians, especially combinatorialists and graduate students taking graph theory, as well as theoretical computer scientists. He assumes a mature familiarity withcombinatorial methods and an acquaintance with basic graph theory. The book is based on the NSF-CBMS Regional Conference on Graph Theory held at Emory University in June, 1984.
This volume contains the proceedings of the AMS-IMS-SIAM Joint Summer Research Conference on Graph Minors, held at the University of Washington in Seattle in the summer of 1991. Among the topics covered are: algorithms on tree-structured graphs, well-quasi-ordering, logic, infinite graphs, disjoint path problems, surface embeddings, knot theory, graph polynomials, matroid theory, and combinatorial optimization.