You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Optimizing HPC Applications with Intel® Cluster Tools takes the reader on a tour of the fast-growing area of high performance computing and the optimization of hybrid programs. These programs typically combine distributed memory and shared memory programming models and use the Message Passing Interface (MPI) and OpenMP for multi-threading to achieve the ultimate goal of high performance at low power consumption on enterprise-class workstations and compute clusters. The book focuses on optimization for clusters consisting of the Intel® Xeon processor, but the optimization methodologies also apply to the Intel® Xeon Phi™ coprocessor and heterogeneous clusters mixing both architectures. Besides the tutorial and reference content, the authors address and refute many myths and misconceptions surrounding the topic. The text is augmented and enriched by descriptions of real-life situations.
Written by high performance computing (HPC) experts, Introduction to High Performance Computing for Scientists and Engineers provides a solid introduction to current mainstream computer architecture, dominant parallel programming models, and useful optimization strategies for scientific HPC. From working in a scientific computing center, the author
This book constitutes the refereed proceedings papers from the 8th International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computing Systems, PMBS 2017, held in Denver, Colorado, USA, in November 2017. The 10 full papers and 3 short papers included in this volume were carefully reviewed and selected from 36 submissions. They were organized in topical sections named: performance evaluation and analysis; performance modeling and simulation; and short papers.
This book constitutes the refereed proceedings of the 29th International Supercomputing Conference, ISC 2014, held in Leipzig, Germany, in June 2014. The 34 revised full papers presented together were carefully reviewed and selected from 79 submissions. The papers cover the following topics: scalable applications with 50K+ cores; advances in algorithms; scientific libraries; programming models; architectures; performance models and analysis; automatic performance optimization; parallel I/O and energy efficiency.
Data centers consume roughly 1% of the total electricity demand, while ICT as a whole consumes around 10%. Demand is growing exponentially and, left unchecked, will grow to an estimated increase of 20% or more by 2030. This book covers the energy consumption and minimization of the different data center components when running real workloads, taking into account the types of instructions executed by the servers. It presents the different air- and liquid-cooled technologies for servers and data centers with some real examples, including waste heat reuse through adsorption chillers, as well as the hardware and software used to measure, model and control energy. It computes and compares the Power Usage Effectiveness and the Total Cost of Ownership of new and existing data centers with different cooling designs, including free cooling and waste heat reuse leading to the Energy Reuse Effectiveness. The book concludes by demonstrating how a well-designed data center reusing waste heat to produce chilled water can reduce energy consumption by roughly 50%, and how renewable energy can be used to create net-zero energy data centers.
This book constitutes thoroughly refereed post-conference proceedings of the workshops of the 16th International Conference on Parallel Computing, Euro-Par 2010, held in Ischia, Italy, in August/September 2010. The papers of these 9 workshops HeteroPar, HPCC, HiBB, CoreGrid, UCHPC, HPCF, PROPER, CCPI, and VHPC focus on promotion and advancement of all aspects of parallel and distributed computing.
Directory of foreign diplomatic officers in Washington.