You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Data centers consume roughly 1% of the total electricity demand, while ICT as a whole consumes around 10%. Demand is growing exponentially and, left unchecked, will grow to an estimated increase of 20% or more by 2030. This book covers the energy consumption and minimization of the different data center components when running real workloads, taking into account the types of instructions executed by the servers. It presents the different air- and liquid-cooled technologies for servers and data centers with some real examples, including waste heat reuse through adsorption chillers, as well as the hardware and software used to measure, model and control energy. It computes and compares the Power Usage Effectiveness and the Total Cost of Ownership of new and existing data centers with different cooling designs, including free cooling and waste heat reuse leading to the Energy Reuse Effectiveness. The book concludes by demonstrating how a well-designed data center reusing waste heat to produce chilled water can reduce energy consumption by roughly 50%, and how renewable energy can be used to create net-zero energy data centers.
The 17th annual International Symposium on High Performance Systems and Applications (HPCS 2003) and the first OSCAR Symposium were held in Sherbrooke, Quebec Canada, May 11-14, 2003. The proceedings cover various areas of High Performance Computing, from specific scientific applications to computer architecture. OSCAR is an Open Source clustering software suite for building, maintaining, and using high performance clusters.
This book constitutes the refereed proceedings of the 29th International Supercomputing Conference, ISC 2014, held in Leipzig, Germany, in June 2014. The 34 revised full papers presented together were carefully reviewed and selected from 79 submissions. The papers cover the following topics: scalable applications with 50K+ cores; advances in algorithms; scientific libraries; programming models; architectures; performance models and analysis; automatic performance optimization; parallel I/O and energy efficiency.
Since its first volume in 1960, Advances in Computers has presented detailed coverage of innovations in computer hardware, software, theory, design, and applications. It has also provided contributors with a medium in which they can explore their subjects in greater depth and breadth than journal articles usually allow. As a result, many articles have become standard references that continue to be of sugnificant, lasting value in this rapidly expanding field. - In-depth surveys and tutorials on new computer technology - Well-known authors and researchers in the field - Extensive bibliographies with most chapters - Many of the volumes are devoted to single themes or subfields of computer science
This book is the second from this series of biennial symposia. The volume is intended as a forum for specialists working in various domains associated with Intensive Computing (Parallelism, Vectorization and Scalar), to discuss the state of the art. During the last decade, there has been sustained growth of scientific computing devices: expanding size of memories, incredible CPU performance unheard of just a few years ago, graphic tools transforming results treatment, networks drastically reducing communication time between computers, etc. It seems of prime necessity for the hardware designer to take into consideration the multiple and often conflicting needs of the scientific computing community, and for users to steadily devote time to update their knowledge of computing environments. Therefore, the main purpose of this volume is to give scientists an opportunity to investigate interactively areas such as Architecture of Supercomputers, Compilers, Algorithms, Computational Methods, Numerical Applications, and others.
None
Contemporary High Performance Computing: From Petascale toward Exascale, Volume 3 focuses on the ecosystems surrounding the world’s leading centers for high performance computing (HPC). It covers many of the important factors involved in each ecosystem: computer architectures, software, applications, facilities, and sponsors. This third volume will be a continuation of the two previous volumes, and will include other HPC ecosystems using the same chapter outline: description of a flagship system, major application workloads, facilities, and sponsors. Features: Describes many prominent, international systems in HPC from 2015 through 2017 including each system’s hardware and software architecture Covers facilities for each system including power and cooling Presents application workloads for each site Discusses historic and projected trends in technology and applications Includes contributions from leading experts Designed for researchers and students in high performance computing, computational science, and related areas, this book provides a valuable guide to the state-of-the art research, trends, and resources in the world of HPC.